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ABSTRACT 

Machine learning gives computers the ability to learn from data without being explicitly programmed. 

Due to its excellent prediction abilities, it has recently gained traction in economics, statistics and social 

sciences. Real-world problems machine learning has been applied to include predicting the probability 

that individuals commit crimes, targeting hygiene inspections by data-mining online restaurant reviews 

or estimating poverty levels based on satellite imagery. In this thesis I explore how machine learning 

can help to solve such and other prediction problems in public policy making and what challenges it 

faces. My goal is to bring the two fields closer together as most public policy makers likely do not even 

know that they face prediction problems that machine learning can help solving. After an introduction 

to prediction problems, I give an overview of how machine learning works and explain under what 

circumstances machine learning can be used for data-driven predictive modeling for the social good. A 

case study about predicting hygiene violations in restaurants illustrates the lessons learned and allows 

to get an idea of what applying machine learning looks like in practice. I then look into the challenges 

and limitations that machine predictions face in public policy making. Besides the fundamental limits 

of prediction, these range from technical and human challenges to ethical and legal issues due to biased 

predictions, black-box algorithms and questions of responsibility. 
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algorithms 
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1 INTRODUCTION 

Judges in the United States have to make a tough decision. When somebody is accused of having 

committed a crime, a judge has to decide where the suspect has to await trail: in freedom being granted 

bail, or in prison. By law, this decision must only depend on the prediction what the defendant would 

do if released (Kleinberg et al. 2017). Will she not show up to the trial? Or even commit another crime? 

Human judges have made these predictions for centuries, but unfortunately their predictions are not 

always correct. As more than 10 million people are arrested per year in the United States (U.S. 

Department of Justice 2016), these mispredictions sum up, with negative consequences for both 

defendants and society (Kleinberg et al. 2017). Recently though, a new player has emerged that could 

significantly improve how bail decisions are made. This new player is called machine learning. Machine 

learning gives computers the ability to learn from data, to create statistical models that capture patterns 

in data, and to make predictions based on the patterns. In the bail decision context, machine learning 

models trained on data about defendants arguably make more accurate predictions than human judges. 

Recent research found that through using such models “crime can be reduced by up to 24.8% with no 

changes in jailing rates, or jail populations can be reduced by 42% with no increases in crime 

rates”(Kleinberg et al. 2017). If this is true, the potential gains for defendants and society could be 

immense. 

Bail decisions are just one example of prediction problems in public policy making. Big data, more 

powerful computers and advancing algorithms have decreased the cost of prediction and led to an 

increasing number of questions being reframed as prediction problems (Agrawal 2018). In the private 

sector, machine predictions are routinely used to obtain credit ratings, recommend books to online 

shoppers, or power self-driving cars. At first sight, none of these problems seems to be about prediction 

per se, but given the right approach, all of them can be phrased as prediction problems. It is not only the 

private sector that can profit from better prediction, but public policy makers also face many similar 

problems that can be solved with machine learning. 

In one sentence, machine learning gives “computers the ability to learn without being explicitly 

programmed” (Munoz 2014). It is a subfield of artificial intelligence, located somewhere between 

computer science, statistics and adjacent disciplines (Jordan and Mitchell 2015). Machine learning and 

big data have recently gained traction in economics, statistics and quantitative social sciences (Taylor, 

Schroeder, and Meyer 2014; Einav and Levin 2014; Schroeder 2014). Machine learning and big data go 

hand in hand and enable many new insights in these disciplines. Better predictions are one of them. 

Given enough training data, machine learning models can often yield better predictions than humans or 

other models. How to use them for the social good, just like the challenges and limitations that this data-

driven approach to predictive modeling faces, are what we will discuss in this thesis. 
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One of the foremost challenges that machine predictions face in public policy making is one of 

knowledge. The communication between machine learning experts, public policy makers and other 

domain experts is not always easy (Rudin and Wagstaff 2014). Most public policy makers probably do 

not even know that they face prediction problems that machine learning can help solving. This thesis 

aims at bringing the two fields closer together. There is no guide yet that gives an overview of how 

machine learning can solve prediction problems in public policy making and offers a concrete example 

in form of a case study. This thesis aims at filling this gap. There is vast literature on machine learning 

and public policy making respectively but not much in the intersection between the two fields. This 

thesis is intended for practitioners at any level of public policy making who face prediction problems 

on a regular basis. Public policy making in this sense is broadly defined because prediction problems 

exists in many different areas of the field. Anybody working for the social good instead of private 

interests is regarded as a public policy maker in this thesis. Acknowledging the often non-technical 

educational background of public policy makers, this thesis tries to find a balance between the technical 

language necessary for understanding machine learning and keeping technical details to a minimum. 

There is no dedicated literature review in this thesis, but instead the whole thesis draws from the 

available literature, somewhat similar to what a review article would do. For topics that we cannot 

discuss in sufficient detail in this thesis, the literature references should give the interested reader a good 

starting point to dig deeper.  

This introduction is followed by six more chapters. The following two explain what prediction problems 

are and give an overview of the machine learning workflow. They should provide the reader with 

sufficient knowledge about data-driven predictive modeling to follow the rest of this thesis. Chapter 4 

contains a case study that illustrates what solving a prediction problem in public policy making looks 

like in practice. We will apply machine learning to predict which restaurants in a city likely violate 

hygiene regulations. Chapter 5 generalizes from the lessons learned before and explains for what kind 

of prediction problems in public policy machine predictions are suitable and what advantages machine 

learning offers over other methods. Chapter 6 then counterbalances the argument for machine learning. 

It goes into the challenges and limitations that machine predictions face in public policy making and 

when machine learning is not an appropriate method to solve prediction problems. The last chapter 

concludes with an overview the most important points. 
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2 PREDICTION PROBLEMS 

Prediction problems are often seen as being mainly a concern of the private sector and not the public 

one. Private companies use predictive methods to recommend products, to predict machine failure or to 

recognize images. Even driving a car has been turned into a prediction problem by having computers 

predict how a human driver would react in a given situation (Agrawal 2018). At first sight, these are 

very different challenges, so what exactly are prediction problems? Prediction problems can be best 

understood when contrasting them with causal inference problems, which public policy makers should 

be familiar with. Most public policy makers likely ask two types of causal questions on a regular basis 

(Gelman 2010): 

1. What is the effect of X? What is the effect of better teachers on test scores, the effect of speed limits 

on car accidents, the effect of subsidies on consumption? These questions look forward in the causal 

chain and ask for the effects of causes.  

2. What causes Y? Why do people vote for populist parties? Why are some countries richer than 

others? Why is the banking system at the brink of collapse? These questions look backwards in the 

causal chain and ask for the causes of effects. 

Both types of causal questions are commonly asked and well-known to public policy makers. They raise 

fundamental issues about the connection between policy interventions and impact, which every public 

policy maker should care about. Consequently, there is a lot of research being done in these areas and 

many methods to address these questions have been developed. Randomized controlled trials, synthetic 

control methods, regression discontinuity designs, instrumental variables and even traditional regression 

analyses are all used to answer these types of causal questions. 

But causal questions are not the only ones the public policy makers have to answer. There are also 

prediction problems, for which causal inference is not necessary (Kleinberg et al. 2015). In the case of 

prediction problems, we do not ask causal “what is the effect of” or “why” question like the ones above 

but simply factual “what” or “how many” questions. What will the weather be like tomorrow? How 

many new students will sign up for school next year? Where will most crimes be committed in a city? 

Answers to such questions are important for the wide range of public policy makers who have to deal 

with them on a regular basis. The local traffic authorities need to know about the weather, the ministry 

of education about the students, and the police about the crime prediction. Some of these questions, such 

as the question for the weather, have complex mathematical models as their answer. Such a model is 

informed by the causal factors which we know to influence the weather, but the model’s purpose is not 

to derive the causal factors themselves. Other questions, like the one for the number of crimes committed 

in a specific area, might be based more on the experience of police officers and simple estimates. There 

is a common pattern in all prediction problems though. Put simply, prediction “is about using 

information you have to generate information you don’t have”(Agrawal, Gans, and Goldfarb 2018). It 
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is about using the known causes of an effect to predict the effect we are interested in. To add some 

details to this general definition, we can distinguish prediction problems along several dimensions. 

The first dimension is temporal. As humans cannot see into the future, the information and data we have 

is always from the past. But predicting something often means predicting the future. In the bail 

prediction example this is clearly the case. A judge has to predict how likely a defendant will commit a 

future crime or not show up for the trial. Predictions do not necessarily have to be about the future 

though. The information we do not have can also be about the past or the present. Take surveys for 

example. Economic or social surveys are only conducted occasionally, not every year in every region. 

Consequently, there are data gaps because we do not know the results a survey would have delivered in 

a year it was not conducted. Filling these data gaps, for example through imputation or interpolation 

methods is an example of predicting the past. When it comes to predicting the present, many economic 

institutions use so-called nowcasting models to predict the current state of the economy (Mol et al. 2015; 

Taylor, Schroeder, and Meyer 2014). The problem that these nowcasting models solve is that many 

economic indicators can only be calculated long after the time period they refer to is over. It simply 

takes some time to gather and process all necessary data to determine the state of the economy at some 

point in time. Nowcasting models provide speedy approximations to the indicators of interest and can 

provide policy makers with timelier information. 

What kind of information can be predicted? This is another dimension along which we can distinguish 

prediction problems from each other. Lifting this question to a more abstract level leads to the distinction 

between regression and classification problems. In the examples above the goal is to predict numbers 

such as the centimeters of snowfall, the number of students or the crime rates in different areas. These 

examples are instances of regression problems, in which the goal is to predict a continuous numeric 

variable. Since the numbers to be predicted in our examples can have any numeric value (in a range of 

sensible values) they are regression problems. Other examples of regression problems involve predicting 

probabilities on a scale from 0 to 1 or bringing items in a certain order (by predicting a continuous 

numeric value and then ordering the items according to this value). In classification problems, on the 

other hand, the goal is to predict a class. A simple two-class classification problem, for example, is fraud 

detection. The European Commission uses fraud detection software for their public tenders to ensure 

that bidders do not copy from other bidders or other illicit sources.1 If this software classifies submitted 

documents into fraud and non-fraud documents, the algorithm has a two-class classification problem to 

solve. Three or more classes are possible too, for example non-fraud, maybe-fraud and fraud. This three-

class problem is ordered because the three classes can be put into some natural order, ranging from a 

small likelihood of fraud to very likely fraud. Other problems require unordered classification, such as 

                                                 
1 Based on my own experience while working for the European Commission’s Secretariat-General. 
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segmenting the types of patients in a public hospital into disease categories to match them to the 

hospital’s departments. This classification problem has no natural ordering and is thus unordered.  

The boundaries between these classes of prediction problems are not always clear-cut. The number of 

cars on the road of a city on a given day, for example, strictly speaking is not a continuous variable 

because the number of cars is always a whole number. Barring accidents, we cannot have 42 and a half 

cars on the roads. But given that there are so many possible different numbers of cars, this is more a 

regression than a classification problem. Where the past ends and the present or the future starts on the 

arrow of time is not always clear either. Nonetheless, it is useful to keep these dimensions in mind when 

reasoning about prediction problems. Considering whether there is any unknown information in the past, 

present or future, be it continuous or more coarse-grained in nature, which could be useful for a public 

policy maker is a good point to get started with predictive modeling for the social good. 

Coming back to the distinction at the beginning of this chapter, causal inference and prediction go hand 

in hand. Prediction is most useful when we already know about relevant causes and effects. If the 

weather forecast predicts snow, the traffic authorities prepare to send out their snowplows; if the number 

of students will likely increase, the ministry of education hires more teachers; if crimes are likely to 

happen in a certain area, the police might send more officers to patrol the area. In all these cases some 

measure (snowplows, hiring teachers, deploying police officers) is known to have some desired effect 

in some environments, but not in others. Snowplows are only useful when it snows, hiring more teachers 

makes most sense when we expect more students, deploying police can deter crime but is a waste of 

public funds if there are no crimes or other relevant problems. In these cases, policy makers need to 

predict what the environment will be at a relevant point in time, so that they can react to it appropriately 

using the information they have about the effects and causes of certain measures. Public policy makers 

make such predictions all the time, often based on their intuition and experience. Machine learning is a 

way to make these predictions more data-driven and accurate, as we will see in the following chapters. 

This being said, machine learning can even help to improve the causal inference techniques mentioned 

above. Randomized controlled trials, synthetic control methods, regression discontinuity designs and 

instrumental variables all involve an element of prediction. As these methods are only known to some 

experts in public policy making, how exactly machine learning can help improving them is explained in 

the appendix on page 36. 
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3 MACHINE LEARNING 

How do public policy makers solve prediction problems? One approach is to rely on human experience 

and intuition. It might work quite well, for example, to deploy police officers based on where the police 

department thinks crimes are most likely. After all, this is what many departments have always been 

doing. But it might also work not so well. Would it not be great if we could use existing data on crime 

rates and other existing information to improve the police department’s crime predictions? This is where 

machine learning comes into play. Machine learning uses information we have to tell us something 

about information we do not have. It is about using data to make predictions. The more data, the better 

a machine learning algorithm can learn from the data. That is why the method is called machine learning. 

Just like humans learn from experience, machine learning gives computers the ability to learn from data. 

This chapter provides a high-level overview of what machine learning is and what steps training a 

machine learning model involves. 

Machine learning is best understood when contrasted with traditional human data modeling. Many 

public policy makers should be familiar with linear regression models, simple statistical models that 

describe linear relationships between independent and dependent variables. Linear regressions and other 

traditional data models are both similar to and different from machine learning models. That is why it 

is worth having a closer look at the similarities and differences between these two cultures of data 

modeling (Breiman 2001). Both human data modeling and machine learning try to model relationships 

in data. Both use statistical models to describe the relationship between independent and dependent 

variables in the data. The crucial difference between human data modeling and machine learning is how 

the model that describes the relationship is chosen. In human data modeling the human modeler chooses 

a stochastic model such as a linear regression model, which is then fit to the data. This reduces the 

problem of fitting an almost arbitrary function to the problem of finding a limited number of parameters 

that maximize the fit of a given functional form to the data (Breiman 2001). In the case of linear 

regressions, these parameters are the axis intercept and the slope. Finding the parameter values that 

maximize the fit of the model to the data is relatively easy using such methods as least squares. 
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Figure 3.1: A linear model and a more flexible model fit to the same dataset 

 

The linear model underfits the data as it is not flexible enough to fit the curved relationship between the 

independent and the dependent variable. However, the more flexible model is too flexible and overfits 

the data. Following the sampled data points too closely leads to a very wiggly curve that does not fit the 

true data-generating function very well. Consequently, the ideal model would be more flexible than the 

linear model on the left but less flexible than the too flexible model on the right. 

In machine learning a human also chooses a particular algorithm to model the relationship between 

independent and dependent variables. In contrast to human data modeling, however, machine learning 

algorithms are able to learn very flexible functional forms from data without humans having to define 

them explicitly. This gives machine learning a crucial advantage: machine learning algorithms are able 

to fit complex models on their own. Choosing a machine learning algorithm restricts the possible 

relationships that can be learned way less than a human-chosen model such as a linear model would do. 

The price to be paid for the simplicity of a linear model (or another data model that humans are able to 

define using simple formulas) is that the model will not fit the data very well if the relationship between 

independent and dependent variables is not linear (or generated according to whatever relationship the 

human modeler has chosen). Of course, it is possible to add nonlinear transformations of the independent 

variables to a linear regression equation. But this still restricts the relationships that can be learned to 

the limited set of functional forms chosen by the human modeler. Machine learning, on the other hand, 

enables the computer to automatically fit more flexible models to describe the relationship between 

independent and dependent variables. This makes model fitting somewhat harder because there are far 

more parameters in machine learning models than there are in such simple models as linear regressions. 

But if machine learning algorithms are given enough training data, they can fit more complex 

relationships between independent and dependent variables than a data model defined by a human could 

ever do. 

Admittedly, the distinction between machine learning and human data modeling is blurred. Even fitting 

a simple linear model using least squares strictly speaking is machine learning. Although a human 
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chooses the linear model, it is the computer that fits the model to the data using least squares. Machine 

learning offers many more algorithms though, which can model more complex relationships in data. 

Unfortunately, using them comes at a cost. Just as a linear model can be too restricted to fit a complex 

relationship, machine learning models can be too flexible, so that they fit some data too well. This 

problem is illustrated in Figure 3.1. If a model is not flexible enough to fit the true relationship between 

independent and dependent variables, one speaks of underfitting. The opposite, when a model is that 

flexible that if follows every data point in the sampled dataset that the model was fit to, is called 

overfitting. The art in machine learning is to find the balance between the two. A model should neither 

be that restricted that it underfits the true relationship between independent and dependent variables, nor 

that flexible that it overfits a given data sample. 

How to use machine learning for prediction in practice? Figure 3.2 shows the high-level workflow of 

creating and using a machine learning model2, consisting of data preparation, model training and making 

predictions. Let us have a look at what each of these steps entails. The following pages should give 

public policy makers a basic understanding of machine learning. More details on the machine learning 

workflow can be found in the literature. James et al. (2007) provide a good introduction, while Hastie, 

Tibshirani and Friedman (2009) offer a detailed overview of different machine learning methods. 

Figure 3.2: Overview of the machine learning workflow from data preparation and model training to 

prediction 

 

Further details of this workflow can be found in the machine learning literature. 

                                                 
2  Technically speaking, the figure illustrates the workflow of training a model through supervised machine 
learning, which is different from other types of machine learning such as unsupervised learning. To keep technical 
terminology to a minimum, “machine learning” in this thesis generally refers to “supervised machine learning” as 
this is the most common type of machine learning and the one that is most useful for making predictions (Jordan 
and Mitchell 2015). Explanations of how other types of machine learning work can be found in the literature. 
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3.1 Data preparation  

The machine learning workflow starts with raw data that we believe to be useful for predicting the 

outcome we are interested in. Raw data rarely comes in a form that is directly useful for machine 

learning. Usually, data has to be cleaned, data quality problems have to be solved, and different data 

sources have to be consolidated into a single dataset. After this step, a dataset usually looks similar to a 

table with variables in columns and observations in rows. In machine learning the variables are also 

called features, which explains why the next step in the workflow is referred to as feature engineering. 

Feature engineering means to extract higher-level features from raw variables (that is, lower-level 

features) in the data to give a machine learning algorithm more useful information. Coming back to the 

bail prediction example, imagine we want to predict whether a defendant is likely to appear before court 

if released on bail. We gather data on past bail decisions and what the defendants did if they were 

released. Once we have cleaned and consolidated the data into a single dataset, one feature in our dataset 

is the charge on which the defendant was arrested. As Table 3.1 illustrates, a higher-level feature based 

on the arrest charge would be an additional feature that describes whether a defendant is charged with a 

violent crime or not. If we believe the violent crime category to be useful to predict if a defendant would 

appear before court if released on bail, this feature engineering step could add valuable information to 

our dataset. In addition to the features, our dataset also needs to contain information on the outcome we 

want to predict, so that a machine learning algorithm can learn the patters that lead to a defendant’s 

failing to appear before court. In machine learning this target variable that we are interested in is called 

a label. At the end of the data preparation process, there should be a set of relevant features and a single 

label for every observation in the dataset. 

Table 3.1: Made-up examples of features that could be used for predicting whether a defendant would 

appear before court if released on bail 

 Features Label 

ID Age Gender Race Arrest 

county 

Arrest 

charge 

Violent 

crime 

Prior 

arrests 

FTA 

1 28 Male White Bronx Murder Yes Drugs Yes 

2 35 Female Hispanic Queens Robbery Yes -  No 

3 21 Male Black Brooklyn Fraud No Guns No 

… … … … … … … … … 

FTA is the label to be predicted and stands for “failure to appear”. Some of the features such race might 

actually not be included in a predictive model because it has become politically unacceptable to use 

them (Angwin et al. 2016). 
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3.2 Model training 

Once the data is clean and there are meaningful features and a label for every observation in the dataset, 

we can start training the actual machine learning model. To begin with, the data is split into three smaller, 

non-overlapping datasets: a training set, a validation set and a test set. As the names suggest, a machine 

learning model is trained on the training set, validated using the validation set, and evaluated on the test 

set. This firewall principle ensures that none of the data used to train the model is used to evaluate it 

(Mullainathan and Spiess 2017). First, a machine learning algorithm takes the features and the labels in 

the training set and fits a statistical model to the data. Just like a linear regression finds the optimal linear 

relationship between the independent variables and the dependent variable, machine learning tries to 

find the relationship between the features and the label – which might be much more complex than a 

simple linear relationship. For example, maybe defendants charged with violent crime are less likely to 

appear before court. Or young defendants, arrested in Brooklyn with a prior arrest on gun charges. There 

is no theoretical limit on how complex the relationship between the features and the label can be. Given 

enough data, machine learning algorithms are able to find these patterns automatically, without a human 

having to specify a limited number of functional forms to be fit to the data.  

Machine learning faces a challenge though. Given a sufficiently flexible model, it is possible to fit any 

dataset arbitrarily well. The graph on the right of Figure 3.1 shows that the more flexible a model is, the 

better it can fit the samples in a dataset. Unfortunately, this is not exactly what we want. The goal in 

machine learning is to make predictions using previously unseen data, not to fit the given data as closely 

as possible. A machine learning model needs to generalize beyond the dataset it was trained on 

(Domingos 2012; Mackenzie 2015). This is where the validation set comes into play. Machine learning 

models have many parameters that are fit to a dataset, just like the intercept and the slope in a linear 

regression. But in addition to these normal model parameters, machine learning models also have 

hyperparameters. Put simply, the hyperparameters of a model control how flexible the model is in fitting 

the data. After initially training a machine learning model on the training set, we can use the validation 

set to validate how accurate the model is in predicting previously unseen labels. We let the machine 

learning model make predictions using the features in the validation set and compare the predicted labels 

to the true labels in the validation set. This gives us an idea of how well the model generalizes. If the 

model fails to generalize beyond the training set (if the predictions on the training set are significantly 

better than the predictions on the validation set), it is likely overfitting. To avoid overfitting, we can 

adjust the hyperparameters of the model to make it less flexible and generalize better (Athey and Imbens 

2016). Models that do not generalize well are unlikely to make accurate predictions when they are 

deployed in a real-world context, so this is a crucial step in training a machine learning model. Once we 

are satisfied with how well the model generalizes from training to validation set, we stop training the 

model. The test set is then used to give us a final unbiased estimate of the model’s predictive 

performance. Comparing the labels that the model predicts for the test set data to the true labels in the 
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test set allows us to evaluate how well the model is able to make predictions for data that has not been 

used during training. 

3.3 Prediction 

At this point we hopefully have a promising machine learning model. We can now start making 

predictions in a real-world context. Taking the bail prediction example, we now want to use the trained 

machine learning model to predict how likely a new defendant would be to appear before court again if 

released on bail. Making predictions using a trained machine learning model is easier than training the 

model in the first place. We simply use the characteristics of a defendant as features, based on which 

the model predicts the probability that the defendant will appear before court. The prediction might then 

be used to make the bail decision, or at least to give the judge some additional information to make her 

decision. 
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4 CASE STUDY - PREDICTING HYGIENE VIOLATIONS  

Virtually every city in the world needs to ensure food safety. The food offered in restaurants and other 

food places should be safe for consumption. Many cities employ hygiene inspectors for this purpose, 

who check restaurants to identify and solve hygiene issues. But there is a problem: cities usually do not 

have enough inspectors to visit every restaurant sufficiently often, so some hygiene violations go 

unnoticed and threaten public health. This is the setting for this case study. Our goal is to better allocate 

hygiene inspectors to restaurant to catch as many hygiene violations as possible. Ideally, hygiene 

inspectors focus on the restaurants that most likely commit hygiene violations – which we can predict 

using machine learning. Coming back to the difference between causal inference and prediction, the 

predicted risk that a hygiene violation occurs is useful information for food authorities because they 

know that hygiene inspectors are a useful causal means to combat hygiene violations.  

In this case study I use a machine learning model trained on past data from the City of Seattle to predict 

future hygiene violations. The data used comes from the paper “Where Not to Eat? Improving Public 

Policy by Predicting Hygiene Inspections Using Online Reviews” by Kang, Kuznetsova, Luca and Choi 

(Kang et al. 2013).3 The dataset combines hygiene inspection scores from the City of Seattle with 

restaurant reviews posted on Yelp, a website for crowd-sourced reviews of local businesses.4 Kang et 

al. (2013) scraped reviews written between 2006 and 2013 for restaurants in Seattle from Yelp and 

combined them with the hygiene inspection records of the city. This resulted in a dataset containing 

13,299 inspections of 1,756 restaurants with 152,153 Yelp reviews. Analyzing this dataset by hand 

would take very long, but for machine learning standards it is a rather small dataset. 

Before training the machine learning model, we need to understand the context better. How exactly are 

hygiene inspection scores in Seattle generated? When an inspector inspects a restaurant in Seattle, she 

assigns an inspection penalty score to quantify how well the restaurant complies with public health and 

food regulations. Figure 4.1 shows the distribution of the scores in the Kang et al. (2013) dataset. The 

higher the score, the worse. However, low positive inspection scores do not necessarily mean that there 

are dangerous hygiene problems. Minor violations such as improper labelling are noted by the inspectors 

and lead to higher inspection penalty score but are not too big a danger for public health (Kang et al. 

2013). To simplify the prediction problem, I therefore do not try to predict the inspection score, but 

whether a score is high enough to be classified as severe hygiene violation. This reduces the prediction 

problem from a regression problem to a two-class classification problem. Since there is no threshold 

above which hygiene violations are officially severe, I define approximately the worst 10% of all 

hygiene violations as severe violations. This results in a penalty score threshold of 33, from which on 

                                                 
3 The data is available for download at http://www3.cs.stonybrook.edu/~junkang/hygiene/ 
4 https://www.yelp.com/ 

http://www3.cs.stonybrook.edu/~junkang/hygiene/
https://www.yelp.com/
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violations are classified as severe. Exactly 10.3% of all hygiene scores found in the dataset fall into this 

category. 

Figure 4.1: Distribution of hygiene inspections penalty scores resulting from 13,299 hygiene inspections 

of 1,756 restaurants in Seattle between 2006 and 2013 

 

The higher the penalty score, the worse. The red line marks the penalty score threshold of 33 used in 

the case study. Hygiene violations with a score equal to or greater than 33 are classified as severe. 

10.3% of all violations in the dataset fall into this category. 

Given that there are far more inspection scores than restaurants in the dataset, many restaurants have 

several inspection scores assigned to them at different points in time. That is why I follow Kang et al. 

(2013) and define the inspection period of an inspection score as the period from the day after the 

previous inspection to the day of the inspection in question. For restaurants without any previous 

inspection, the first inspection period spans the last 6 months before the first inspection. Figure 4.2 

shows the distribution of the lengths of the inspection periods according to this definition. 
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Figure 4.2: Distribution of the lengths of the inspection periods in the hygiene prediction dataset in 

days. 

 

The inspection period of an inspection score is defined as the period from the day after the previous 

inspection to the day of the inspection in question. For restaurants without any previous inspection, the 

first inspection period spans the last 6 months before the first inspection (hence the unusually high peak 

in the histogram around the period of 180 days). 

The prediction problem we are facing now is to predict the outcome of the hygiene inspection at the end 

of each inspection period. This is a simple two-class prediction problem. Are the violations found in a 

hygiene inspection severe or not? What data can help us to answer this question? Table 4.1 shows the 

features used to train the machine learning model in this case study. The easiest way to imagine them is 

a huge table where each inspection period is a row and each feature is a column.   
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Table 4.1: Features and label contained in the dataset used in the hygiene violation case study 

Data Explanation 

ZIP Code The ZIP Code of the restaurant. 

Cuisines The cuisines offered in the restaurant according to Yelp, such as Japanese, 

Mexican, Pizza, Sandwiches etc. 

Length of the 

inspection period in 

days 

The inspection period of a hygiene inspection ranges from the day after the 

previous inspection until the day of the inspection in question. The first 

inspection period of a restaurant spans the six months before the first 

hygiene inspection of that restaurant.   

Number of reviews  The number of reviews of a restaurant that users posted on Yelp during the 

inspection period. 

Average review 

rating 

The average rating of the reviews of a restaurant posted during the 

inspection period (ranging from one to five stars). 

Number of negative 

reviews  

The number of reviews of a restaurant with a rating below or equal to three 

stars that users posted on Yelp during the inspection period. 

Average previous 

inspection penalty 

score 

The average of the hygiene inspection penalty scores assigned to a 

restaurant before the inspection in question (zero if there has been no 

previous inspection). 

Previous inspection 

penalty score 

The hygiene inspection penalty score assigned to a restaurant in the last 

inspection before the inspection in question (zero if there has been no 

previous inspection). 

Review text The concatenated texts of all reviews posted during the inspection period. 

Inspection penalty 

score 

The inspection penalty score assigned to a restaurant in the inspection 

period in question. The goal is to predict if this score is equal to or greater 

than 33, in which case a hygiene violation is labeled as severe. 

 

A significant part of the data preparation necessary for this case study has been done by Kang et al. 

(2013), who scraped restaurant information and review texts from Yelp and combined them with 

hygiene inspection scores from the City of Seattle. But there is some feature engineering left to do. 
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Training machine learning algorithms requires numeric data. Most of the features in Table 4.1 such as 

the length of the inspection period in days, the number of reviews, or the ZIP code are numeric, so they 

have the correct format. The cuisines feature and the hygiene violation label can easily be converted to 

numeric features by coding them as dummy variables. But how to convert the review texts into numeric 

data? 

Figure 4.3: A Yelp review that might indicate hygiene problems in a restaurant 

 

Some personal information has been removed from the review for privacy reasons. 

As Figure 4.3 shows, a Yelp user is free to write virtually anything in a review, ignoring grammar and 

spelling rules or even inventing new words. Machine learning is able to find pattern even in this messy 

data, but cleaning the text before using it as input into a machine learning algorithm likely yields better 

results. That is why I prepared the review texts in three steps, using standard algorithms5: 

1) I removed all punctuation marks from the reviews and converted all words to lower case. 

2) I removed all stopwords from the reviews. Stopwords are words such as “the”, “but”, and “for” that 

are so frequent in the English language that they do not contain much information that is relevant 

for prediction. 

3) I lemmatized all remaining words by removing all inflectional endings and converting them to their 

dictionary form. For example, “goes”, “went” and “going” were all converted to “go”. 

After this preprocessing, numeric features can be extracted from the review texts. I used a statistic called 

term frequency-inverse document frequency (TFIDF) that I applied to the concatenated texts of the 

reviews in an inspection period. The basic idea behind TFIDF is to calculate how frequent a word is in 

the review text of a particular inspection period and divide this frequency by a number summarizing in 

                                                 
5 The algorithms used can be found in Python’s spaCy package at https://spacy.io/ 
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what share of all review texts the word is used.6 If we just calculated the frequency of a word in a review 

text without normalizing it using the frequency of that word in all review texts, words that are more 

common in the English language would be automatically overrepresented compared to less common 

words. TFIDF avoids this problem and should give a good idea of how frequent a word is in a review 

text compared to its frequency in all review texts. To provide the machine learning algorithm with more 

useful information, I did not only use single words (so-called unigrams) to calculate the TFIDF, but also 

applied it to word pairs and word triples (so-called bigrams and trigrams). Table 4.2 shows how these 

n-grams are extracted from a preprocessed example sentence. 

Table 4.2: The text preprocessing steps used in the hygiene violation case study applied to an example 

sentence 

Original sentence We enjoyed our food, although parts of it were burned. 

Preprocessed sentence enjoy food part burn  

Unigrams enjoy, food, part, burn 

Bigrams enjoy food, food part, part burn 

Trigrams enjoy food part, food part burn 

The preprocessing steps are removing all punctuation marks, converting all words to lower case, 

removing stopwords, and lemmatizing the remaining words. 

I only added the TFIDFs of the 5,000 most frequent uni-, bi-, and trigrams to the existing dataset. The 

resulting tabular dataset still has 13,299 rows (one for each inspection period), but now 5,135 columns: 

one for each feature, including those in Table 4.1 (with the ZIP code and the cuisines encoded as dummy 

variables) plus the TFIDFs of the 5,000 most frequent uni-, bi-, and trigrams. The result is large dataset 

with 5,135 features for every inspection period. Traditional modeling techniques could have difficulties 

with such a dataset where the number of variables is in the same order of magnitude as the number of 

observations, but machine learning can handle it. 

Having prepared the dataset, I used 80% of the dataset consisting of 10,639 inspection periods for the 

training and validation sets and the remaining 2,660 inspection periods for the test set. I then trained 

several machine learning models using the training and validation set. The model that achieved the best 

results was a so-called random forest classifier. How this and other machine learning algorithms work 

is beyond the scope of this thesis, but many good explanations can be found in the machine learning 

literature. In any case, often the choice of a particular machine learning algorithm is less important than 

good feature engineering and having relevant data to begin with. In general, good data beats cleverer 

algorithms (Domingos 2012). 

                                                 
6 The exact explanation of how the algorithm works can be found at http://scikit-

learn.org/stable/modules/feature_extraction.html#tfidf-term-weighting  

http://scikit-learn.org/stable/modules/feature_extraction.html#tfidf-term-weighting
http://scikit-learn.org/stable/modules/feature_extraction.html#tfidf-term-weighting
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How well does the trained random forest model make predictions? For evaluating its predictive 

performance, I used the so-called area under the receiver operating characteristic curve (AUC), a metric 

that is common for evaluating predictions in machine learning. Our random forest model reaches on 

AUC of 0.7, which is shown in Figure 4.4. Despite its complicated name, AUC has an intuitive 

explanation. If you randomly pick an inspection period from all inspection periods that end with a severe 

hygiene violation and another one randomly from all inspection periods that do not end with a severe 

hygiene violation, the AUC is the percentage of such randomly drawn pairs for which the model predicts 

a higher hygiene violation risk for the inspection period that ended in a severe hygiene violation. In 

other words, given a random pair of inspection periods, one of them with hygiene violation and the other 

one without, there is a 70% probability that our model ranks the inspection period with the severe 

violation higher in risk than the one without severe violation. This is a success for our model. A perfect 

model would rank every single one of such pairs correctly and have an AUC of 1, but a 70% probability 

of ranking correctly is significantly better than random guessing, which would result in a probability of 

only 50%. Our machine learning model seems to have learned something useful. 

Figure 4.4: Receiver operating characteristic curve (ROC) for the random forest classifier used in the 

hygiene prediction case study 

 

The statistical literature provides exact definitions of the true and false positive rates shown in this plot. 

For the purpose of this case study, it is merely important that the classifier reaches an area under the 

receiver operating characteristic curve of AUC = 0.7. This means that given a random pair of inspection 

periods, one of them with hygiene violation and the other one without, there is a 70% probability that 

the model ranks the inspection period with the severe violation higher in risk than the one without. The 

dotted line indicates the worst ROC possible with an AUC of 0.5. The best ROC possible would have a 

value of 1 everywhere, which results in AUC of 1. 

How useful is our model in practice though? Although the AUC is a common metric in machine 

learning, it does not tell us much about the real-world predictive performance of our model. To get a 

better idea of how well our model makes predictions, it makes sense to have a look at the different types 
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of prediction errors the model makes. Table 4.3 shows the so-called confusion matrix, which compares 

the model’s predictions with the actual labels in the test set. There are two possible kinds of prediction 

errors: false-positive and false-negative ones. False positive errors occur when a model predicts a severe 

hygiene violation, but there was no severe violation in reality. False negative errors are those where 

there was a severe hygiene violation in an inspection period, but a model predicted that there was none. 

As the confusion matrix shows, our model reaches an overall accuracy of 75.5% on the 2,660 inspection 

periods in the test set. This means that 126 + 1,882 = 2,008 of the model’s predictions were correct. This 

is not too bad, but still leaves 504 false positive and 148 false negative predictions, which add up to 

24.5% of all predictions in the test set. Relying on this model alone for allocating hygiene inspectors to 

restaurants in Seattle is thus likely a bad idea. The predictions could be used to give hygiene inspectors 

additional information as to which restaurants are likely to commit hygiene violations, but as every 

fourth prediction is wrong it is probably not reliable enough on its own.  

Table 4.3: Confusion matrix for the random forest classifier trained using the training and validation 

sets of in the hygiene violation case study 

Accuracy: 75.5% 

(n= 2,660) 

 

Predicted label 

Severe violation Not severe 

Actual 

label 

Severe violation 
126 

(true positives) 
148 

(false negatives) 

Not severe 
504 

(false positives) 
1,882 

(true negatives) 

The predictions are evaluated on the 2,660 inspection periods in the test set, which comprises 20% of 

the full dataset. 

Nonetheless, this case study shows that using data-based predictive modeling to improve the allocation 

of hygiene inspectors to restaurants can be a promising approach. Hygiene inspections are a suitable 

prediction problem for machine learning. There are repeated inspection decisions to be made on a 

regular basis; there are new data sources in the form of Yelp reviews that contain predictive patterns; 

and the hygiene violation predictions are easy to evaluate by sending an inspector to a restaurant. Since 

Yelp offers a common online platform not only for Seattle but also for many other cities, it would be 

easy to scale up the machine learning model created in this case study to use it in other regions as well. 

This would probably improve the predictive performance of the model and allow it to have real-world 

impact. Recent research, for example, found, that the City of Boston could be 30-50% more effective in 

allocating hygiene inspectors to restaurants if it used the winning algorithm from an online machine 

learning tournament (Glaeser et al. 2016). That is a huge win for budget-stripped city administrations 

and shows how machine learning can improve public policy making.
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5 MACHINE PREDICTIONS 

Solving prediction problems with machine learning results in machine predictions. We have seen that 

prediction problems exist in public policy making and how machine learning can be a viable approach 

to solve them. In this chapter we will have a closer look at when exactly machine predictions can be 

useful for public policy making and what advantages machine learning offers in such cases. We will 

also see some more examples of prediction problems in public policy making to which machine learning 

has already been applied. 

5.1 Suitable Prediction Problems 

Not all prediction problems in public policy making are suitable for machine learning. There is a number 

of conditions to be met for machine predictions to be useful. One of them is that the outcome to be 

predicted must be frequent enough to be captured by statistical methods. Public policy makers would 

like to know the outcome of many uncertain events, but some of them are so unique that data-based 

modeling is the wrong approach. Who will win the next war? Will a scandal thwart the plans of the 

governing party? What will be the next decision of a capricious head of state? Although these are 

important questions, machine learning cannot answer them because these events are rare, and each one 

is special in its own way. For machine learning, the outcomes to be predicted need to be sufficiently 

similar to leave behind similar patterns in data, which then can be picked up by an algorithm. This 

implies that the objective to be predicted must not be too complex. The hygiene violations in the case 

study can be detected by sending an inspector to a restaurant, which all have to comply with the same 

regulations. Bail predictions are also relatively straightforward because they mainly depend on the 

predicted probability that a defendant would appear before court if released on bail. But predicting other 

kinds of court decision is a much more difficult problem. Factors that can be predicted such as recidivism 

risk play a role in sentencing, but many other factors such as deterrence, retribution and remorse, which 

are very difficult to measure, are usually also taken into account. Consequently, sentencing is too 

complex a problem for machine learning (Kleinberg et al. 2017). A related condition is that the 

predictions made by a model can be evaluated. Great predictive performance on the data collected to 

train an algorithm does not help much if its predictions in the real world are too inaccurate. We need to 

test if an algorithm’s predictions are correct and generalize well. If an algorithm, for example, predicted 

that a defendant would not commit a crime when released, but the defendant does commit one, the 

prediction was obviously wrong. Unfortunately, it is not always that simple to evaluate predictions, as 

we will discuss in Chapter 6. 



   
21 

5.2 Advantages of Machine Learning 

What advantages does machine learning have over other data modeling approaches? Unsurprisingly, the 

main advantage of machine learning is that it excels at prediction. This ability stems from different 

factors. One factor is that machine learning can deal with high-dimensional data, with the number of 

variables being in the same order of magnitude as the number of observations. Machine learning is very 

good at recognizing informative patterns in data and connecting them to the prediction objective. A 

related advantage is that the data used in machine learning can come in a wide variety of formats. A 

simple one is just a big table in which the columns are variables and the rows observations. But as big 

data is often a byproduct of the many computer mediated transactions taking place in our modern world 

(Varian 2010), it can also include text, images, videos, sounds, sensor data and many more – in general, 

any information that is digital or can be digitized. Every transaction on the internet, for example, leaves 

digital traces behind, which can be very useful for public policy making. Some people also define big 

data in terms of the so-called three Vs: larger data volume, velocity and variety (Hassani and Silva 2015; 

Booz Allen Hamilton 2015). Besides being big, big data is usually available with a shorter time lag and 

in a more granular form than traditional data (Einav and Levin 2014; Jordan and Mitchell 2015). Data 

aggregated at country or regional level, which is still used a lot in public policy making, for example, 

underutilizes machine learning’s capabilities as a lot of information is lost during the aggregation. Public 

policy making could get a lot of prediction ability alone by using new sources of granular big data 

instead of aggregated datasets. Machine learning’s last advantage becomes apparent once a model has 

been fit. In this case it is easy to scale the model up (Kleinberg, Ludwig, and Mullainathan 2016). Once 

trained, a model can make predictions on new data at close to zero marginal cost. All you need is a 

system that stores data and uses the model to make predictions. One should of course evaluate if the 

predictions based on the new data are accurate, but given that this is the case, scaling up a machine 

learning model is straightforward and promises less variable predictions than humans. 

5.3 Examples from Public Policy Making 

What prediction problems are there in public policy making? Table 5.1 gives an overview of prediction 

problems in a variety of fields in public policy making and how they can be solved using data-driven 

models. It outlines the prediction objective, the data and methods used, and the results of the paper. 

Some papers use advanced machine learning techniques, whereas others use more traditional regression 

models. But in both cases machine learning is potentially a viable approach to create predictive models. 

As this table shows, machine learning and data-driven modeling can be used in many different settings 

in public policy making. The examples range from agriculture, education and public engineering to 

economic, tax and health policy and come from both economically developing and developed countries. 

Prediction problems play a role from the municipal to the international level and many different data 

sources, including satellite imagery, electronic health records and classroom data can be used to tackle 
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them. The table illustrates how many different prediction problems there are in public policy making 

and how machine learning can help to solve them. 

Seeing this table, one question remains: what ways are there for public policy makers to solve prediction 

problems with machine learning in practice? Even most quantitative public policy makers who are 

familiar with data modeling, probably have never applied a machine learning algorithm themselves 

because the method has only recently gained a lot of attention. Although quantitatively oriented policy 

makers could probably learn how to apply machine learning from books and (online) courses, a more 

likely solution is to cooperate with consultants who are experts in machine learning. Discussing the 

prediction problems at hand with them, while being aware of the challenges and limitations that we 

discuss in Chapter 6, is probably the easiest way to solve a prediction problem through machine learning. 

If this is too costly, a cheaper approach would be to cooperate with volunteers in the data science 

community. Data scientist and machine learning experts are often quite open to work for free for projects 

that promote the social good. Machine learning competition platforms such as Kaggle7 or DataKind8 

can be a good starting point for solving machine learning problems. These platforms publish datasets 

together with a specific prediction problem and invite the machine learning community to solve it. The 

best solution usually wins a prize. Browsing the completed prediction competitions on these websites 

gives a good idea of what kinds of prediction problems have already been solved using this approach. 

 

Table 5.1: Examples of machine learning being applied to prediction problems from different areas of 

public policy making 

 Paper Method, data and goal Result 

E
co

n
o

m
ic

 p
o
li

cy
 

Combining satellite 

imagery and machine 

learning to predict 

poverty 

(Jean et al. 2016) 

Convolutional neural networks 

are trained on publicly available 

high-resolution satellite imagery 

to estimate local consumption 

expenditure and asset wealth in 

five African countries. 

The inexpensive and scalable 

model can explain up to 75% of 

the variation in local-level 

economic outcomes. It could 

transform how poverty is 

targeted and tracked in 

developing countries. 

Predicting poverty 

and wealth from 

mobile phone 

metadata 

(Blumenstock, 

Cadamuro, and On 

2015) 

Automatic feature engineering 

and elastic net regularization are 

used on an individual’s past 

history of mobile phone use to 

infer her socioeconomic status. 

In regions where censuses and 

household surveys are rare, the 

method allows to gather 

inexpensive, localized and 

timely information (at a finer 

level than satellite imagery). 

                                                 
7 https://www.kaggle.com/  
8 http://www.datakind.org/  

https://www.kaggle.com/
http://www.datakind.org/
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A
g

ri
cu

lt
u

ra
l 

p
o
li

cy
 Random Forests for 

Global and Regional 

Crop Yield Prediction 

(Jeong et al. 2016) 

Random Forests are compared to 

multiple linear regressions for 

their ability to predict crop 

yields of wheat, maize, and 

potato using climate and 

biophysical variables at global 

and regional scales. 

Random Forests outperformed 

multiple linear regression 

benchmarks in all performance 

statistics, making them an 

effective and versatile machine 

learning method for crop yield 

prediction. 

H
ea

lt
h

 p
o
li

cy
 

Predictive Modeling 

for Public Health: 

Preventing Childhood 

Lead Poisoning 

(Potash et al. 2015) 

Logistic regressions, support 

vector machines and random 

forests are used to predict the 

risk of children being poisoned 

by lead in their homes in 

Chicago. Data comes from blood 

tests, home lead inspections, 

property value assessments and 

censuses. 

The models allow the 

Department of Public Health to 

prioritize which households to 

target when trying to prevent 

lead poisoning before it occurs. 

This is a better method than 

waiting for blood tests to 

indicate poisonings after the 

fact. 

Prediction mode-ling 

using EHR data: 

Challenges, 

strategies, and a 

comparison of 

machine learning 

approaches (Wu, 

Roy, and Stewart 

2010) 

Logistic regressions, support 

vector machines and boosting 

are used on data from electronic 

health records (EHRs) to detect 

heart failure before the actual 

date of clinical diagnosis. 

The models are able to predict 

heart failure more than 6 

months before the actual clinical 

diagnosis reasonably well. This 

means that a patient’s health 

history can be used to predict 

future illnesses and target 

interventions. 

E
n

g
in

ee
ri

n
g
 Water pipe condition 

assessment: a 

hierarchical beta 

process approach for 

sparse incident data 

(Li et al. 2014) 

Bayesian nonparametric learning 

and existing infrastructure data 

are used to predict the failure 

probability of water pipes in a 

city to establish a ranking for 

inspections. 

Experimental results show that 

the model does better than 

current best practice methods, 

leading to substantial savings on 

reactive repairs and 

maintenance. 

P
u

b
li

c 
h

ir
in

g
 

Productivity and 

Selection of Human 

Capital with Machine 

Learning (Chalfin et 

al. 2016) 

Stochastic gradient boosting and 

regression with Lasso 

regularization are used to 

improve police hiring decisions 

and teacher tenure decisions. 

The data used includes surveys 

as well as socio-demographic 

and classroom data. 

Using machine learning models 

for hiring decisions can 

potentially reduce the excessive 

use of force by police and 

improve police-community 

relations. Similarly, students 

would benefit from better 

teacher hiring decisions. 

T
a

x
 p

o
li

cy
 

Collaborative in-

formation acquisition 

for data-driven 

decisions (Kong and 

Saar-Tsechansky 

2014) 

Combinations of multiple 

learners and a variety of data 

sources are used to improve the 

cost efficiency of tax audit 

decisions. 

The approach could increase 

sales tax profits by an average 

of 4 percent, strengthening this 

revenue source for 

governments. 
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6 CHALLENGES AND LIMITATIONS 

So far, this thesis has made the case for using machine learning in public policy making. Predictive 

modeling has the potential to change how public policy makers solve prediction problems. But machine 

learning is no panacea. This section explains what challenges and limitations machine predictions face. 

It is important for public policy makers to be aware of these challenges and limitations. In practice, most 

public policy makers will cooperate with professional vendors of prediction software or consultants 

rather than implementing a machine learning solution themselves.  Companies offering machine 

learning solutions sometimes tend to oversell their products by making unrealistic promises (Kleinberg, 

Ludwig, and Mullainathan 2016). In such cases it is important to ask the right questions and not to take 

every claim for granted. This chapter aims at preparing public policy makers for this job. The challenges 

and limitations that machine predictions face in public policy making can be divided into three 

categories: the limits of prediction, technical and human challenges, and ethical and legal issues. 

6.1 Limits of Prediction 

Can we predict everything? Of course not. Although we live in an interconnected world, where technical 

systems interact with the social nature of their users (Vespignani 2009) and where increasing amounts 

of data are produced by these interactions, some things remain unpredictable. Predictions of the behavior 

of complex techno-social systems of the kind that public policy makers face will never be completely 

accurate. The complex systems in today’s world are comprised of large numbers of individual units, 

who exhibit to some extent random and unpredictable behavior (Brunner 1999). The world is constantly 

changing for all kinds of technical, environmental and social reasons. Because of this change, what was 

yesterday is not necessarily so today or tomorrow. Even given the biggest of all big data and the most 

powerful algorithms, we are not able to predict the behavior of such systems with total certainty. Even 

machine learning cannot cross this fundamental border. 

What does this mean in practice? When a system whose behavior we want to predict is too dynamic, a 

machine learning model that has been trained on data from the past, might not be able to accurately 

predict future data. This danger can never be completely avoided. In fact, one reason why complex 

techno-social systems are hard to predict is that policy makers constantly interfere with them. Take the 

hygiene prediction case study, for example. Given Yelp reviews and restaurant information, the machine 

learning model was able to predict hygiene violations in Seattle. If this model were used in practice, 

public health inspectors would be sent to the restaurants prioritized by the algorithm. Unfortunately, this 

very intervention might invalidate some of the model’s future predictions. In the best case, this means 

that risky restaurants learn that they cannot escape hygiene inspectors anymore so that they improve 

hygiene conditions. In the worst case, restaurants learn that Yelp reviews can be revealing so that they 

incentivize their customers to write positive reviews or even buy fake reviews to conceal the opinion of 

their real customers (Kang et al. 2013). In general, there is evidence that big data and new prediction 
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methods have not led to increased accuracy of the predictions of some reactive systems (Cueni and Frey 

2014). Forecasting the weather is easy compared to predicting the behavior of systems that react to 

predictions. Unfortunately, public policy makers usually have to deal with the latter. 

What can we do about the problem that predictive patterns in data change? The only solution is to update 

machine learning models from time to time. This is similar to what humans would do. Without the aid 

of a predictive model, hygiene inspectors have to choose themselves which restaurants to target. In some 

restaurants they find severe hygiene violations, in others they do not. This allows inspectors to learn 

from their experience where they most likely find hygiene violations. One could say that inspectors 

develop their own internal models to predict hygiene violations. Whenever they find no violation where 

they expected one, or when they unexpectedly encounter a violation, they should update their internal 

believes based on the new piece of information. For using machine learning in practice, it is necessary 

to employ a similar strategy. Models have to be retrained from time to time to take newly-available data 

into account. This way it is possible to keep up with the changes in predictive patterns and to ensure that 

a model continues to make accurate predictions (Mackenzie 2015). 

6.2 Technical and Human Challenges 

Data access, data management and computation are technical challenges in machine learning (Einav and 

Levin 2013). Creating a predictive model requires training data, but often public policy makers do not 

have access to the same wealth of data as the private sector. Because people are often concerned about 

the state’s gathering too much data, accessing valuable big data for machine learning may pose a 

challenge for public policy makers. Even if policy makers get access to relevant big data, the next steps 

are not necessarily easier. Managing big data and computing with them requires substantial storage 

capacity and computational power. With datasets getting larger, even conceptually trivial task take 

longer and require more effort. For example, even such simple tasks as extracting and summarizing 

variables from big data and exploring the relationships between them can take considerable time (Einav 

and Levin 2013). Recruiting qualified personnel for such positions even poses a challenge to the usually 

well-paying private sector (Martin-Jung 2016). For the public sector, the availability of skilled personnel 

can be even more of a challenge (Hassani and Silva 2015). 

Another technical challenge is to evaluate the accuracy of machine predictions. Decision makers want 

to see evidence that machine predictions are accurate before using them. In some areas of public policy 

making it is possible to run experiments. In the developing world, for example, randomized controlled 

trials are relatively common in education or public health and can be used to evaluate predictions. They 

are the best way to evaluate machine predictions (Kleinberg, Ludwig, and Mullainathan 2016). In other 

areas such as criminal justice, however, conducting experiments is impossible. In such cases, testing the 

accuracy of machine predictions is a big challenge. Take the bail prediction example again. As 

mentioned at the beginning of this thesis, the authors claim that using their machine learning algorithm, 
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“crime can be reduced by up to 24.8% with no changes in jailing rates, or jail populations can be reduced 

by 42% with no increases in crime rates” (Kleinberg et al. 2017). How do they know? They definitely 

did not run an experiment and jailed and released defendants based on their predictions. It is very 

difficult to evaluate what people who were kept in jail would have done if they had been released on 

bail. To overcome this problem, Kleinberg et al. (2017) had to use advanced econometric techniques 

exploiting the fact that defendants are as-good-as-randomly assigned to judges, some of which in turn 

make stricter bail decisions than others. The details of their econometric approach go beyond the scope 

of this thesis, but this example shows that evaluating machine predictions in the social realm can be very 

challenging. To be fair, evaluating human predictions is not necessarily easier. It is also very difficult 

to determine how well a single judge predicts how likely a defendant would commit a crime. In contrast 

to an algorithm that always predicts the same outcome given the same data, human predictions are also 

much more variable and often influenced by factors that should not play any role in decision making. 

There is evidence that judges are influenced by factors that should be extraneous to judicial decisions, 

including literally “what the judge ate for breakfast” (Danziger, Levav, and Avnaim-Pesso 2011). Using 

big data and properly evaluating predictions in such cases is a challenge, but also a chance to introduce 

more rigor to important areas of decision making in ways that were previously impossible (Bornstein 

2017). 

Figure 6.1:  The long way from identifying a prediction problem suitable for machine learning to real-

world impact 

 

Source: Wagstaff 2012. 

Machine prediction are not only challenging in technical terms. There is a significant human component 

as well. Figure 6.1 shows that the way from identifying a prediction problem suitable for machine 

learning to data-based predictions having impact in the real world is very long. The steps between data 

collection and running experiments to evaluate machine predictions can roughly be regarded as technical 

steps. They mainly require the knowledge and expertise of machine learning professionals who have the 



   
27 

right skills. For the steps at the beginning and the end of the way to real-world impact, however, the 

challenge is not so much technical but human. Humans are necessarily at both the beginning and the 

end of every implementation of a machine prediction solution. Everything begins with recognizing a 

prediction problem and phrasing it as a machine learning task. Public policy makers who have never 

heard of how machine predictions are possible likely have a hard time recognizing such opportunities 

at all (Porway 2015). There are many efforts to equip people with a more data-driven mindset, but such 

efforts are still in their infancy as data science is a very new discipline. If a public policy maker reads 

this thesis and only takes the point away that data and machine learning can be used for solving 

prediction problems, much is gained already. 

The necessary step at the end of the way to real world impact is that humans actually use machine 

predictions for making decisions. Simply claiming that an algorithm makes accurate predictions is likely 

insufficient to convince people to use the predictions. Imagine a judge who has made bail decisions for 

all of her working life and suddenly is told that a machine makes better predictions than her. Convincing 

the judge to use the machine predictions in this case requires a good strategy. Such a strategy should not 

only teach that machine predictions are often superior to human predictions but also that machine 

predictions can be wrong. For example, hygiene inspectors have access to information that the machine 

learning algorithm in the case study did not know about. Somebody calling the hygiene authorities to 

complain about a problem in a restaurant gives human inspectors valuable information that the model 

based on online reviews cannot incorporate without further processing. The best possible solution to 

this problem is to combine machine predictions with human predictions so that the combination is better 

than either alone. 

6.3 Ethical and Legal Issues 

Even if we can overcome the challenges mentioned so far, a crucial question remains: do we actually 

want to use machine predictions? Just because we are able to predict something, this does not mean that 

we are comfortable relying on that prediction (Kleinberg, Ludwig, and Mullainathan 2016). In this 

section we can only scratch the surface of the ethical and legal issues entailed by machine predictions, 

but public policy makers who plan to use machine learning should definitely be aware of their existence. 

The biggest ethical and legal challenge that machine predictions face is bias. There are several ways 

how bias can enter machine predictions. The first way is the machine learning algorithm itself. It matters 

which machine learning algorithm is chosen to solve a prediction problem. Some algorithms are able to 

model more complex relationships than others. If a predictive model is too simple for the predictive 

relationships in the data, it underfits the data and introduces bias into its predictions. Only carefully 

testing what kind of machine learning algorithm is suitable for a prediction problem can avoid this issue. 
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The second way bias can enter machine predictions is by choosing the wrong prediction objective. The 

goal during the training of a machine learning algorithm is always to optimize some statistic of the 

training data. In the hygiene inspection case study, for example, the machine learning algorithm 

optimized for the area under the receiver operating characteristics curve (AUC). The model that 

generated the highest AUC was considered the best model. However, the metrics used to evaluate a 

machine learning model in the real world are often different from those used during the training of the 

machine learning algorithm (Lipton 2016). Hygiene predictions should be judged by how much they 

improve the allocation of hygiene inspectors to restaurants and improve food safety, instead of using 

such a complex metric as AUC that is obscure to everyone but machine learning experts (Wagstaff 

2012). To align a model’s prediction goal with the real-world outcome of interest, it is important that 

public policy makers sit down with machine learning experts to find an optimization objective that 

reflects as far as possible the real metric of interest (The Economist 2016b). 

The third way bias can enter predictions is through biased training data (Kleinberg, Ludwig, and 

Mullainathan 2016). This is the most difficult problem to avoid because biased data often implies that 

there is bias in the existing processes that generate the data. Imagine we wanted to predict how likely 

an individual is to commit a future crime. We gather data on arrests from the criminal justice system 

and other relevant information and train a machine learning model using this data. How could this be 

problematic? The problem is that the data from the criminal justice system merely tells us when 

somebody was caught committing a crime. But being caught committing a crime is an imperfect proxy 

for actually committing a crime. For example, if black people have been discriminated against by the 

police in the past, say by overly policing the areas where large parts of the black population live, and 

this discrimination is reflected in the data, machine learning models are very likely to pick up this 

discrimination and bias their predictions against black people (O’Neil 2016). In fact, there are already 

allegations that some of the crime prediction software in use in the U.S. is biased and makes worse 

predictions for blacks than for whites (Angwin et al. 2016). It is surprisingly difficult to keep bias out 

of a dataset. For reasons of justice, we might not want such information as race, religion or gender to 

play any role in predictions. It is easy to exclude such variables directly but very difficult to eliminate 

their indirect effects. The problem is that such data often enters predictions through the backdoor. Race, 

for example, is often strongly correlated with where somebody lives and gender with the profession 

somebody pursues. If we excluded every variable that correlates with a variable that should not play a 

role in prediction making from a dataset, there would often not be much left to make predictions on. The 

opposite of this problem, however, can also lead to bias. Instead of bias entering a dataset through the 

variables included in it, bias can also enter predictions through the variables that are not included in the 

dataset. It is hard to gather all relevant variables for a prediction, but predictions based on only some of 

all relevant variables can lead to omitted-variable bias and faulty conclusions (Kleinberg et al. 2017). 
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What to do against bias in machine predictions? Transparency, gathering more data and the continuous 

evaluation of machine predictions can help to some extent. Otherwise nobody would even know that, 

for example, some predictive models are more accurate for whites than for blacks. But even if a model 

has different accuracies for different subgroups of the population, is this reason enough to discard the 

model? Not necessarily, it always depends on the available alternatives to the machine predictions. If 

human predictions are even more biased or inaccurate than machine predictions, we might choose the 

machine predictions although they are not perfect. Probably neither human nor machine predictions will 

ever be completely free of bias, but being transparent about their shortcomings is the first step towards 

making them better. In general, public policy makers should be careful when using historically grown 

data for prediction making as parts of it might be biased against disadvantaged groups. There might be 

no way to completely avoid bias, but there are at least ways to mitigate the problem. 

A second big ethical and legal challenge that machine predictions face, and which aggravates the bias 

problem, is that many machine learning algorithms are black boxes that do not explain the logic behind 

their predictions. Fully understanding a predictive model is possible only in some cases. The predictions 

of a linear model with few variables, for example, are easy to explain (Lipton 2016). The sums of the 

coefficients of the model multiplied by the values of the independent variables give the prediction. Based 

on the sign of a coefficient and its absolute value, it is easy to see how strongly any of the independent 

variables contributes to a prediction. The problem is that more advanced machine learning models 

almost always include non-linearities and complex dependencies between variables (Obermeyer and 

Emanuel 2016). In such cases, there is no single arithmetic formula to describe how a prediction is 

generated. Consequently, no human can understand such models in their entirety. This is obviously not 

ideal if we want to use such models for decision making. It is difficult to build trust in a model that we 

do not understand (Ribeiro, Singh, and Guestrin 2016). 

What to do when a machine learning model is too complex to be understood by a human? There are two 

possible ways. One of them is to approximate the behavior of a model in the proximity of a single 

prediction we are interested in. Researchers have developed a technique that explains the predictions of 

any machine learning model in the region of the data around a prediction of interest by fitting a local 

interpretable model to this region (Ribeiro, Singh, and Guestrin 2016). This method does not explain 

the predictions of the model as a whole but at least gives an idea of how the model generates the 

prediction at hand. The other possible way is to use machine learning models that indicate how certain 

they are about a prediction. Some models do not only make predictions but also estimate the probability 

that a particular prediction is true. Of course, this does not allow us to explain the model’s predictions, 

but at least we get an idea of how sure the model itself is about a certain prediction. Humans could then 

scrutinize those predictions in which the model only has low confidence. Maybe this is the only way to 

go if we want better predictions. The complexity of machine learning models might simply be the price 

we have to pay for high predictive accuracy (Welling 2015). For many real-world problems, there is a 
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trade-off between the interpretability of a model and the accuracy of its predictions (Lipton 2016). 

Simple linear relationships might just not be sufficient to model the complex reality of our world. It is 

likely that many machine predictions are better than human predictions precisely because they model 

complex relationships beyond the boundaries of human understanding. As long is this complexity is 

counterbalanced by more accurate predictions, we might decide to use more complex models even if we 

cannot fully understand why a model predicts certain outcomes. 

The last challenge in this section is the question of responsibility. Who is responsible for machine 

predictions? An answer to this question is relevant both from and ethical and a legal point of view. Some 

predictions such as in the bail example can have great influence on people’s lives. If a prediction is 

correct, there is no problem, but just as human predictions, machine predictions are sometimes wrong. 

Who to hold accountable for a wrong prediction? The users of an algorithm? Those who created the 

model? Those who provided the data? There is no satisfactory legal answer to these questions yet. 

Existing legal systems are only slowly adapting to the new reality, but first initiatives are on the way. 

One of the most far-reaching regulations in this area is the European Union’s new General Data 

Protection Regulation, which gives people the right to meaningful information about the logic involved 

in automated decision-making that affects them (Courtland 2018). Along similar lines, the City of New 

York recently announced a task-force to scrutinize the algorithms used by the City for equity, fairness 

and accountability (City of New York 2018). These are good first steps to tackle this important issue, 

but some more have to follow before our public systems are fully ready to deal with machine predictions. 

Once the necessary laws have been adopted, machine predictions do not necessarily have to entail lower 

accountability than human predictions. People like to compare technological solutions to perfection, 

whereas humans are allowed to have their very human flaws (The Economist 2016a). But data-driven 

analyses and predictions can also be scrutinized for biases and other unwanted behavior. Mathematical 

models can even be more transparent and reliable than humans, who often offer mere justifications for 

their decisions instead of thorough causal explanations (Lipton 2016). Getting the legal basis for 

algorithmic accountability right is no easy task for a legal system that is used to deal with human agency, 

but there seems to be no way around this challenge. 

This concludes the discussion of the challenges and limitations that machine predictions face in public 

policy making. There are some additional issues that should be taken into account in this context such 

as privacy, proper encryption and data protection (Lazer et al. 2009), which are definitely topics that 

play a role for machine learning because of all the data that is necessary to train a model. Security and 

gameability are other such issues that would merit some attention (Ghani 2016). However, as these 

issues are not unique to machine predictions but affect data handling and policy making systems in 

general, they are not discussed here. Nonetheless, a public policy maker who wants to use machine 

learning to solve a prediction problem should be aware of them in addition to the ones discussed in this 

chapter. 



   
31 

7 CONCLUSION 

This thesis has shown that machine learning is a possible way to solve prediction problems in public 

policy making. Even though many challenges and limitations remain, data-based predictive modeling 

could change how public policy makers solve prediction problems. For the first time in history, large-

scale big data on the social behavior of people is available. It is no longer statistical agencies with their 

coarse-grained, aggregated datasets that allow to gain the majority of insights into human behavior but 

the fine-grained data generated in today’s techno-social systems (Davies 2017; Porway 2015). Living 

in such a data-driven world has many upsides for public policy making. Ideally, the focus on data could 

introduce more rigor and fairer processes. Humans have had to solve prediction problem in public policy 

making for centuries, but rarely ever have these predictions been thoroughly evaluated and tested for 

their accuracy. In the age of big data, this could finally change, with machine learning playing a major 

role in producing better predictions for the social good. 

This being said, machine learning is no panacea. It should avoid being a tool in search of a problem. 

Public policy makers have many more problems to solve than just prediction problems, and some 

prediction problems cannot be solved by machine learning. Ideally, we combine data-based modeling 

with human intuition and experience to harness the strengths of both and avoid the weaknesses of either. 

It is unlikely that we will completely rely on algorithms for complex prediction problems such as bail 

predictions in the near future. But in many less controversial areas like hygiene violations this might 

well soon be the case. Unfortunately, there is also a great potential for the misuse of predictive modeling 

(Kleinberg, Ludwig, and Mullainathan 2016). Authoritarian states could use the technology to control 

their citizens. China, for example, plans to introduce a mandatory social credit system from 2020 on. 

Once the system is in place, the behavior of every citizen will be rated by algorithms. The resulting 

social score can then be used to “incentivize” behavior that is desired from the government’s point of 

view (Botsman 2017). Combining this social credit system with machine learning could lead to a yet 

unknown degree of control of the government over its citizens. Instead of reacting to unwanted behavior 

after it has happened, the government might opt for a preventive approach to stop unwanted behavior 

before the fact. Only the future will show whether machine predictions will be rather be employed for 

such use cases or for the ones outlined in this thesis. But machine learning and big data are here to stay 

– and public policy makers should be aware of the opportunities to use data-driven predictive modeling 

for the social good. 
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9 APPENDIX – PREDICTION FOR CAUSAL INFERENCE 

Machine predictions alone are not sufficient to answer causal questions because they only predict that 

something happens, but not why. However, machine learning can still lead to more robust causal 

inference. Predictions are an essential part of the effects-of-causes framework of causal inference. As 

the name suggests, in this framework we are interested in what the effects of a cause are. We can do this 

in the common counterfactual formulation. What would happen if we did Y instead of X? By definition, 

a counterfactual is never known – but we can predict it. Consider the four popular techniques for 

identifying the effects of causes: randomized controlled trials, difference-in-differences, regression 

discontinuities and instrumental variables. For those who are familiar with these methods, here are some 

points on how to use machine learning to improve causal inference (Varian 2016): 

 In randomized controlled trials we need to estimate the counterfactual: what would have happened 

to the treated without the treatment and to the untreated with the treatment? Machine learning 

models can do this job, taking a large number of variables into account. This also makes it easier to 

estimate heterogenous treatment effects (Belloni et al. 2013). 

 The same is valid for difference-in-differences, for which we have to estimate the counterfactual 

that would have happened without the intervention that took place. Machine learning’s excellent 

prediction abilities might help in this respect. 

 For regression discontinuities we need a predictive model for the behavior near the discontinuity. 

Given enough data, this behavior can be modelled nonlinearly with machine learning. 

 In the case of instrumental variables, the instrument should enter the equation linearly, but the other 

covariates do not have to. Machine learning can be used to model flexible functions of these 

covariates. 

All of these tools are used for causal inference, but machine learning and big data may be able to improve 

these tools, giving us more trust in the causal estimates derived from them. 




