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ABSTRACT 

Affordable access to electricity has long been found to be a key lever for social and economic 

development. Over 600 million people in sub-Saharan Africa (SSA) still lacked such in 2016. Given the 

pertaining issues in grid extension, off-grid solar photovoltaic (PV) applications promise a cheap and 

scalable way to provide those households without access to the grid with electricity. Research on the 

diffusion of solar PV applications and other renewable sources of energy suggests, that a lack of 

financing options and access to financial services poses a hurdle for households to invest into such 

technologies. The success of off-grid solar PV applications across SSA over the past years coincides 

with a surge of mobile bank accounts. This dissertation attempts to answer the question, if the diffusion 

of solar PV applications was impacted by an increased access to financial services through traditional 

and/or mobile bank accounts. To do so, data on installed solar PV capacities and the percentage of the 

population using traditional or mobile bank accounts across 38 countries of sub-Saharan Africa in 2011, 

2014 and 2017 are analyzed in two cross-sectional regression models. The findings suggest that a 1% 

increase in the percentage of the population owning a bank account increases installed solar PV 

capacities between 0.15 MW for any bank account in 2014 and 0.44 MW for mobile bank accounts in 

2017. However, these results display a high degree of uncertainty, which is mainly related to issues of 

data availability as well as potentially omitted variables in the employed models. More research is 

required to overcome uncertainty and potentially unravel causal mechanisms at play in order to inform 

policy makers and development agencies about the potential win-win combination of mobile bank 

accounts and off-grid electrification. 
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1. INTRODUCTION 

1.1 Background 

Access to affordable sources of energy is crucial to the development of countries and households 

(González-Eguino, 2014: 378-379). Running machinery, cooking, lighting rooms before and after dark 

or charging phones all require sources of energy. For most of these energy needs, electricity is required. 

Providing people with access to electricity has been a crucial component of governments across Africa 

for a long time and still is today. In 2016, approximately 940 million people globally lacked access to 

electricity with almost 600 million in sub-Saharan Africa (SSA) alone (Our World in Data, 2020). In 

2018, only 26% of rural households in SSA had access to electricity, relying mostly on traditional fuels 

for cooking and heating (IEA, 2020). In 2017, almost 400.000 people likely died prematurely due to the 

effects of indoor air pollution from cooking with solid fuels (Our World in Data, 2020). Despite general 

progress in means of infrastructure, establishing reliable energy grids, that have provided the population 

of developed countries with electricity for decades at low prices, still poses a huge problem to many 

governments in sub-Saharan Africa. 

Figure 1 - Comparing Access to Electricity in sub-Saharan Africa and the World, Source: IEA 2020, own elaboration 

For those still lacking access to electricity via the grid, off-grid technologies have become the main hope 

of electrification. The IEA predicts, that of all people gaining access to electricity between 2017 and 

2030, 30% will do so through solar photovoltaic (PV) technology and another 30% through mini-grids 

(IEA, 2019: 28). While initial applications of off-grid energy generation were expensive and mainly 

geared towards development projects with substantial funding, costs per installed Megawatt (MW) of 

solar PV systems have decreased by over 60% in Africa between 2012 and 2016 down to a minimum of 

1.30USD per Watt with the global average at 1.80USD per Watt (IRENA, 2016). 

Today, a diversity of solar applications ranging from pico solar lamps to full-scale solar-home-systems 

and household appliances are available across African countries. Despite advances in prices, 
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investments are usually required to finance upfront cost – in regions of Africa where income and savings 

are rare, this poses a challenge to the advancement of solar PV applications. 

 

Figure 2 - Off-Grid Energy Generation in sub-Saharan Africa, Source: IRENA 2020, own elaboration 

 
The need for financing options coincides with a surge of mobile bank accounts in Africa. Just in the past 

decade, over 400 million mobile accounts have been created across sub-Saharan Africa (GSMA, 2020). 

While these applications were often limited to simple functions such as transferring and receiving money 

as well as a basic infrastructure to withdraw cash, providers are beginning to include financing options 

for their customer base as well. 

 

Figure 3 - Number of registered Mobile Money Accounts in Sub-Saharan Africa, Source: GSMA 2020, own elaboration 
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One solution aiming to tackle the issue of financing for solar photovoltaic (PV) applications are pay-as-

you-go or “PayGo” models, where consumers provide a minimal upfront payment, receive the desired 

application and then pay daily or weekly amounts to repay the initial loan over a period of multiple 

years. Spearheading the charge is Kenya’s largest mobile network operator Safaricom. When purchasing 

a phone or SIM-card from Safaricom, customers automatically receive a mobile bank account at M-

PESA, Safaricom’s mobile bank. All M-PESA customers are then able to purchase solar PV appliances 

at M-KOPA, the solar PV subsidy of Safaricom. According to their own reports, M-KOPA has so far 

“sold over 750,000 off-grid solar systems, providing 3 million individuals with clean, safe lighting 

solutions” (M-KOPA, 2020). 

The puzzle of interest for this dissertation is, if there is a causal link between the surge of mobile banking 

and installed solar PV capacities in countries of sub-Saharan Africa related to the effects of financial 

inclusion or if companies such as M-KOPA simply explore a pre-existing customer base that had no 

access to their solar PV products before. 

1.2 Theoretical and substantive justification 

A substantive body of literature has already assessed the potential and applications of renewable energy 

in sub-Saharan Africa (see e.g. Bazilian et al, 2012; Karekezi, 2002; Moner-Girona et al, 2006). Most 

research conducted has so far focused on promoting or inhibiting domestic factors of specific countries 

in SSA. While these conditions might provide reasons for the diffusion of certain new technologies, 

little research has yet been conducted on the impact of financial inclusion on technology diffusion as 

the main point of interest was, how technology can foster financial inclusion and not vice versa (see e.g 

Andrianaivo & Kpodar, 2012). 

This dissertation seeks to complement existing literature by looking at an example of financial inclusion 

– i.e. mobile banking applications – fostering the diffusion of a new technology – i.e. solar PV 

applications. Figure 4 shows a simple correlation of account ownership and installed off-grid solar PV 

appliances in countries of SSA for 2011, 2014 and 2017. Except for 2011, the correlation is strong and 

positive which warrants further research. 
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The topic is important in a real-world application for two main reasons: Energy Poverty and Climate 

Change Mitigation. Although endowed with huge potential for renewable energy generation, about half 

of SSAs population still has no access to electricity at home (IEA, 2020). A lack of access to electricity 

can have negative effects on public service provision, productivity, education and health (González-

Eguino, 2014: 382-384). Generating electricity through decentral, renewable sources could bridge 

current problems related to central energy provision. Regarding climate change, the growing energy 

consumption of SSAs population will pose a significant threat to world climate if based on traditional 

means of producing electricity. Identifying the promoting or inhibiting factors at play is thus crucial for 

domestic and international policymakers to target the growth of renewable energy in a timely and 

efficient manner. If levers to foster financial inclusion by promoting mobile banking also have a positive 

follow-up impact on renewable energy capacities, it could further boost these important topics on a 

policymaker’s agenda. 

1.3 Research question 

Using a quantitative approach, this dissertation aims to estimate the effect of mobile banking coverages 

in SSA on installed off-grid solar PV capacities, and thus to answer the following research question: 

“What is the impact of (mobile) bank account coverage on installed off-grid capacities of solar PV 

applications in countries of sub-Saharan Africa?” 

To do so, the following hypothesis will be tested: 

In a comparison of sub-Saharan African countries in 2011, 2014 and 2017, those with a higher 

coverage of (mobile) bank accounts among the population will also show higher levels of 
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installed off-grid PV capacities when compared to those with a lower coverage of (mobile) bank 

accounts. 

Testing the hypothesis is approached in two steps. First by estimating the general effect of bank account 

ownership at either a financial institution or a mobile banking provider and second by differentiating 

between those parts of the population with only an account at a financial institution or only a mobile 

money account. 

1.4 Structure 

Chapter two of this dissertation features a literature review on technology diffusion, renewable energy 

applications and financial inclusion in countries of SSA. The main goal of this review is to establish a 

theoretical framework to help answer the research question. To do so, factors influencing the diffusion 

of technology in general and solar PV in specific are assessed in order to derive dimensions which need 

to be controlled for when comparing the diffusion of solar PV applications across countries. Second, 

effects of financial inclusion in general and mobile banking in specific on developing countries are 

analyzed to identify potential causal mechanisms from financial inclusion to the diffusion of solar PV 

technology in countries of SSA. 

In the third chapter, a framework to operationalize the theoretical findings is established, data 

availability and imputation are discussed regarding potential measurement errors and data used for the 

regression models is described. Last, the employed regression models and the general analytical 

approach is presented. 

Following operationalization, chapter four presents results as well as limitations of the different 

regression models and discusses their ability to answer the research question at hand. 

Finally, chapter six concludes by lining out some recommendations for future research and summarizing 

the results. 

 

2. LITERATURE REVIEW 

2.1 Diffusion of technology & renewable energy applications 

The broader concept of technology diffusion has a long-standing tradition to explain the spreading of a 

new technology within and across markets from an economic perspective. In a key article to provide a 

theoretical base for the diffusion of technology, Paul L. Stoneman defines it as “[…] the process by 

which innovations (be they new products, new processes or new management methods) spread within 

and across economies.” (Stoneman, 1985: 1). Jacobsson and Johnson use a similar definition to develop 

a framework for renewable energy diffusion in general (Jacobsson and Johnson, 2000). They propose 

to complement neoclassical economic perspectives of relative price changes and the individual firm 
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action with a technology specific innovation system, consisting of actors, networks and institutions to 

assess diffusion rates (Jacobsson and Johnson, 2000: 629, 638). 

While useful as a starting point, the fact that their work is heavily focused on OECD countries limits the 

applicability to SSA, as the idea of replacing old technology with an emerging one is especially 

important in countries where issues are not related to power-supply but rather to sustainability. Still, the 

discussed inhibiting factors and comparisons of incumbent, pre-existing systems versus emerging ones 

need to be observed in countries of SSA as well, as institutional, financial and technological “lock-in 

effects” (Jacobsson and Johnson, 2000: 633) can also apply on a different scale, where legislations, 

corporations or other actors favor the extension of fixed grids over off-grid energy provision. It is also 

worth noting that lock-in effects described for larger systems by Jacobsson and Johnson (2000) may 

also apply to individual households in a certain way, when deciding to switch from traditional sources 

of energy to modern solutions, such as solar PV. 

Eder, Mutsaerts and Sriwannawit complement these works by taking the perspective of individual 

households in their case study of a Swedish energy company distributing biogas powered mini-grids in 

rural Uganda (2015). After conducting interviews with households in the focus-area of the provided 

technology, they develop three main dimensions influencing the adoption and thus diffusion of said 

technology in rural Uganda: Technological, Economic and Social (Eder et al, 2015: 50). The 

technological dimension features the perception towards and awareness of the technology by relevant 

customers. This starts with the advantages related to electricity – which most households were aware of. 

But interviews showed that next to perceived reliability and advantages over the status quo, information 

campaigns on applications, risks and functionality also play an important role for households to consider 

a new technology (Eder et al, 2015: 50-51). The economic dimension of technology diffusion in this 

study is broken down into Affordability, Payment Systems, Investment Cost and Appropriate Tariffs. 

Affordability relates to a company’s decision to offer products where the populace is likely able to afford 

them. Payment Systems refer to the type of system used to make payments for a technology – for a 

technology to diffuse successfully, this should be as compatible as possible to the currently used 

systems. Investment Cost describes the initial investment required for a household or individual to 

purchase the technology and Appropriate Tariffs relate to the need for companies to find a usage price 

that reflects the household’s or individual’s willingness to pay for the service offered. Interestingly, the 

authors found that in rural Uganda, individuals often believe that “western” technologies should 

generally be free of charge for them (Eder et al, 2015: 51). Finally, the social dimension reflects the 

need to collaborate with local actors for a technology to diffuse successfully. Here, the authors highlight 

partnerships with local experts, a required dialogue with local inhabitants, the need to use local 

communication channels as well as the necessity to manage the user’s expectations (Eder et al, 2015: 

52). 
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Despite the potentially limited scalability of a study conducted in rural Uganda to other countries of sub-

Saharan Africa, the findings presented by Eder and his colleagues (2015) hint at many important aspects 

to consider when developing a framework for technology diffusion generally. It shows that differences 

in the potential user-base of a technology between countries, be they economic, educational, cultural or 

social need to be monitored and controlled for when trying to establish a model in a cross-country 

comparison. 

Bawakyillenuo (2012) approaches the diffusion of solar PV in Ghana, Kenya and Zimbabwe from a 

social perspective, using the Social Construction of Technology (SCOT) framework. He finds that the 

interplay of favorable economic conditions, political landscapes, international influences and powerful 

agents promoting solar PV has led to a successful diffusion in Kenya and Zimbabwe when compared to 

Ghana (Bawakyillenuo, 2012: 420). Similarly, Ahlborg and Hammar (2014) show that drivers and 

barriers to renewable energy technologies in rural Tanzania and Mozambique mostly lie with national 

actors during planning and implementation of projects. 

Taking a more micro-economic perspective, Ketlogetswe and Mothudi (2009) assess the feasibility of 

small-scale solar projects for different households in Botswana. They find that next to aforementioned 

conditions, little flexibility in financing schemes and repayments for loans still pose a main problem for 

households when investing in solar PV applications (Ketlogetswe and Mothudi, 2009: 1678). In line 

with these findings, Lemaire (2011) argues that fee-for-service concessions in South Africa promise 

financial feasibility. However here, grid connection is far more advanced than in Botswana, thus 

providing additional revenue streams for providers (e.g. through feed-in tariffs). In a comparison of eight 

case studies across Rwanda, Tanzania and Malawi, Barry, Steyn and Brent (2010) also find, that the 

availability of finance was a major constraint to the implementation of different technologies (Barry, 

Steyn & Brent, 2010: 6). 

The reviewed literature shows that the general dimensions to consider in the diffusion of renewable 

energy applications are very comparable across studies. However, an important aspect is that both, a 

user-perspective as well as a provider or system-perspective, are required to assess technology diffusion 

in any country and thus a cross-country comparison. These findings help to develop a framework when 

assessing the diffusion of solar PV applications in countries of sub-Saharan Africa and trying to isolate 

the impact of (mobile) bank account coverage on it. 

Additionally, the findings of reviewed studies clearly indicate, that financial constraints often pose a 

major hurdle to the diffusion of renewable energy technologies and solar PV applications. The question 

at hand is, if mobile banking helped overcome these issues in some countries already, thus leading to a 

more successful diffusion of off-grid solar PV applications. 
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2.2 Financial inclusion and mobile banking 

The World Bank’s Global Findex Database measures financial inclusion according to four sets of 

criteria: (1) Account ownership & usage; (2) Savings behavior; (3) Borrowing and (4) Insurance 

products (Demirguc-Kunt & Klapper, 2012: 8). Here, financial inclusion is measured from a perspective 

of usage rather than supply, where indicators like branch-density, cost of service or service entry-barriers 

would be assessed. Household-based estimates like the World Bank’s Findex Database are especially 

useful when trying to dissect who is using financial services and for what reasons. 

Financial development has been shown to increase income for the poorest and reduce income inequality 

(see e.g. Beck, Demirguc-Kunt & Levine, 2007). More generally, financial inclusion has shown to drive 

economic growth in general by providing access to credit, thus allocating capital to productive areas 

formerly not covered by the system, as well as the access to saving accounts or deposits. Here, additional 

savings are theoretically injected into the financial system, thus allowing the additional capital to be 

invested into productive means (Sethi & Acharya, 2018: 371-372). 

In a study on the effects of mobile banking in rural Uganda, Munyegera and Matsumoto (2016) find, 

that households using mobile money applications also show significantly higher household consumption 

in food, non-food basics, education and social contributions (Muneyegera & Matsumoto, 2016: 136). 

The main mechanism they identify for this increased consumption is remittance payments (Muneyegera 

& Matsumoto, 2016: 131-132). In their sample, households using mobile banking applications receive 

higher and more frequent remittances when compared to non-user households (Muneyegera & 

Matsumoto, 2016: 135). They argue that the most likely reason for this difference is the ease and cost 

of transferring payments from one location to another with mobile money applications compared to 

former ways (Muneyegera & Matsumoto, 2016: 137). These findings align with another study on the 

impact of mobile phone penetration and financial service provision on household consumption in Ghana 

(Abor, Amidu & Issahaku, 2018). 

Similarly, Ouma, Odongo and Were (2017) find, that financial services provided through mobile phones 

positively affect savings behavior on a household level, using data from Kenya in their savings 

estimation model (Ouma, Odongo & Were, 2017: 31). Here, they find that both the likelihood of saving 

at all as well as the amount saved per household increase for those households using mobile banking 

applications (Ouma et al, 2017: 33). Given, that Kenya is a frontrunner in mobile money, these results 

may be limited in their applicability across countries of SSA for now. On the other hand, Kenya in its’ 

advanced stage of mobile phone and mobile banking penetration could also serve as a good example of 

where other countries of SSA could be heading. 

The available literature shows that financial inclusion in general and mobile banking in particular can 

raise household consumption as well as income through various mechanisms and increase household 

savings in different countries across SSA. Any one of these effects could potentially explain a higher 
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diffusion rate of solar PV applications in countries with a higher coverage of (mobile) bank accounts if 

this dissertation finds it to be true. 

2.3 Linking financial inclusion and technology diffusion 

When linking financial inclusion to the diffusion of technologies, multiple possible causal pathways 

emerge. Figure 5 aims to capture three possible causal pathways, which will be discussed. Note, that 

these pathways take a demand-side perspective, and therefore only assess the impacts of financial 

inclusion on households or individuals, and how these could translate into a higher demand for solar PV 

applications. This follows the assumption, that while there are supply-side factors likely to influence the 

diffusion of solar PV applications in general, these are probably not influenced by or have an influence 

on financial inclusion but can be controlled for separately in the statistical analysis of this dissertation. 

 

Figure 5 - Causal pathways from Financial Inclusion to Solar PV Applications - Source: Own elaboration 

The first possible pathway assumes that by accessing financial services, household income is likely to 

rise which then also increases the demand for solar PV applications. The impact of access to financial 

services on household income was already discussed in the first part of this literature review (see e.g. 

Beck et al, 2007; Muneyegera & Matsumoto, 2016). Multiple studies from different countries in SSA 

show, that higher income also translates into a higher likelihood of investing into renewable energy 

technology (see e.g. Guta, 2020; Rahut, Behera & Ali, 2017). 

A second option would be for households to save more in total and more frequently, as observed by 

Ouma, Odongo and Were (2017) in Kenya, when accessing mobile financial services. The likelihood of 

households investing into said applications should be higher when more savings are available to cover 

upfront cost. 

The third option for financial inclusion to potentially impact the demand for solar PV applications would 

be through a higher availability and usage of loans by households. If households can access loans, those 
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could be used to either cover the whole cost of investing into a solar PV application or to cover the 

upfront investment required in certain payment modalities. In their review of case studies across Africa, 

Barry et al (2010) also showed, that a lack of access to loans by rural households still posed a constraint 

on the adoption of renewable technologies, as conditions for these had to be negotiated by implementing 

development agencies rather than a standard cooperation between resellers and mobile banking 

operators (Barry et al. 2010: 6). A study in rural Ethiopia uncovered, that access to credit did indeed 

positively affect the likelihood of households to purchase renewable energy technologies (Guta, 2020). 

To summarize, the literature review has shown, that while a multitude of factors influence the diffusion 

and adoption of renewable energy technologies like solar PV, constraints in financing the respective 

technology have posed a significant barrier to households in the past. Financial inclusion through mobile 

banking can theoretically overcome these constraints by increasing income and savings on a household 

level as well as providing access to loans which could be used to invest into said applications. As this 

link has not been the subject of many studies so far, shedding light on the impact of financial inclusion 

through mobile banking on solar PV diffusion could help to inform policy-makers, corporations and 

researchers alike on potential causal pathways and thus areas of focus to further promote the 

electrification of SSA. 

3. OPERATIONALIZATION 

3.1 Data collection & availability 

As the diffusion of solar PV applications is the main variable of interest, this dissertation uses installed 

electricity capacities of off-grid solar PV applications in megawatt (MW) as the dependent variable. 

Data is obtained from IRENA (2020) through an online query-tool, which is available on a yearly basis. 

For the independent variables, two main sources are used. First, the World Development Indicator 

(WDI) database (2020) provides information on the percentage of the population aged 15 or older with 

an account at either a financial institution or a mobile-money provider. This indicator is used to capture, 

“traditional” bank accounts as well as mobile bank accounts, thus covering the whole bandwidth of 

financial inclusion related to bank accounts. Data on this indicator is available for 2011, 2014 and 2017 

only. The Financial Inclusion Database (2020) is used to compute two more indicators for mobile 

banking, i.e. the percentage of the population aged 15 or older with a mobile money account and 

“traditional” banking, i.e. the percentage of the population aged 15 or older with an account at a financial 

institution. The respective indicators of the financial inclusion survey do not differentiate between those 

parts of the population which only use a mobile bank account or only an account at a financial institution. 

However, as one of the aims for this exercise is to differentiate the effect of mobile banking on installed 

solar PV capacities, these indicators are computed as follows: 
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1. Percentage of population (aged 15 years or older) with only a mobile bank account: 

Subtract the percentage of the population which have a traditional (financial institution) bank 

account, including those which also have a mobile money account, from the percentage of the 

population which have a traditional OR mobile money account. 

2. Percentage of population (aged 15 years or older) with only a traditional account: 

Subtract the percentage of the population which have a mobile money account, including those 

which also have a traditional bank account, from the percentage of the population which have a 

traditional OR mobile money account. 

As data on mobile bank accounts is only available for 2014 and 2017, these indicators are limited to two 

periods. 

Using these main indicators, the next step is to define the base units of observation. In this case, all 48 

countries of SSA. However, data availability is limited and while imputation can help overcome some 

of these limitations, it would be questionable to include countries into the analysis where no data is 

available at all. 

 

Figure 6 - Exclusion of countries with no data in main variables, Source: Own elaboration 

Figure 6 illustrates the logic of excluding countries because of missing data in the main variables of 

interest. In the first step, those countries are excluded where no observations of installed solar PV 

capacities are available between 2011 and 2018. This applies to two countries: Comoros and Equatorial 

Guinea. The second step relates to data on financial inclusion. Here, those countries are excluded where 

no information is available on either the percentage of the population with a mobile or institutional bank 

account. It applies to seven countries, thus limiting the number of countries of this analysis to 39. 

Finally, to deal with outliers in one of the main variables, South Africa is also excluded from the analysis, 

as total installed PV capacities amount to 2.561 MW in 2017 – more than double of all other countries’ 

capacities combined. This step reduces the total number of countries in this analysis to 38. As financial 

inclusion indicators are only available for three periods (2011, 2014 and 2017), the total number of 
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observations – assuming missing datapoints can be imputed successfully – is 114 or 76 for those 

indicators only available in 2014 and 2017. 

In order to include other factors potentially influencing the diffusion of solar PV technology in SSA, 

this dissertation follows the general logic employed by Eder et al (2015) to group controls into the 

following: (1) Technological, (2) Economic and (3) Social. However, as this analysis is based on 

secondary data instead of household surveys, and thus cannot measure perception towards solar PV 

applications as such, proxies which are likely to impact that perception are used. 

Related to the technological dimension, this analysis controls for the percentage of population with 

access to electricity, assuming that households in those countries with an accessible grid or other 

established forms of generating electricity are less likely to switch to solar PV applications. Data on this 

indicator was obtained from the World Development Indicator Database (2020). Additionally, the 

percentage of individuals using the internet will be used as a proxy for the general technological 

development of a country, assuming that a population with a larger share of internet users is also more 

likely to adopt new technologies like solar PV applications. Data for this indicator was obtained from 

the International Telecommunication Union (2020). Other indicators like road-density or mobile 

network coverages were also considered here but ultimately rejected in order not to overload a regression 

with limited data availability in the first place. 

To control for economic differences between countries, this study includes Gross National Income 

(GNI) per capita, in current US Dollar using the World Bank’s Atlas method (2020). This is assuming, 

that in those countries with a higher GNI, technologies like solar PV applications are more likely to 

diffuse effectively when compared to those with lower GNI. The World Bank’s Atlas Method helps to 

smooth fluctuations in exchange rates and prices which is especially useful in some countries of SSA, 

where currencies are very volatile over time. As a second economic dimension, the consumer 

affordability of electricity indicator from the RISE framework is used (2020). The indicator consists of 

three sub-indicators measuring cost of a subsistence consumption, the affordability of connection fees 

as well as the availability of a mechanism to support low-volume consumers (RISE, 2020). This 

indicator could cause a potential issue with simultaneity, as both the cost of a subsistence consumption 

as well as the connection fee are potentially lower in solar PV applications and would thus be impacted 

by larger shares of solar PV capacities in a country. However, the currently very low percentage of 

electricity generated through solar PV across the sample is unlikely to impact it in a substantial manner. 

It is therefore more likely to capture the effect of a low affordability index on installed solar PV 

capacities, where those countries in which electricity is generally less affordable are more likely to adopt 

technologies like solar PV applications. 

The social dimension of this analysis is captured through two more indicators. First, secondary school 

enrolment rates are employed to estimate differences in education between countries. This assumes, that 
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those populations with a higher degree of education are more likely to be aware of the mid- and long-

term economic and health benefits of renewable energy technologies over traditional ones and thus more 

likely to invest into those technologies. Data for this indicator is obtained from the World Bank Database 

(2020). The second social indicator is another index from the RISE framework (2020) assessing the 

support for stand-alone electricity systems in countries. This index checks for the existence of a national 

support program, financial incentives as well as the standards and quality for the systems under such a 

framework (RISE, 2020). Support of governments for stand-alone systems is likely to promote the 

diffusion of solar PV applications through multiple channels and therefore an important factor to 

consider in this analysis (see e.g. Bawakyillenuo, 2012). 

Table 1 summarizes all control indicators used as well as their predicted impact on the main dependent 

variable and the respective data source. See Appendix 3 for links to the data sources. 

Variable Predicted dep. Var. Relation Source 

Technological Controls 

Population with access to electricity 

(% of total) 
Negative 

World Development 

Indicators 

Individuals with access to the 

internet (% of total pop.) 
Positive 

International Telecom. 

Unit 

Economic Controls 

Gross National Income per Capita 

(Current USD) 
Positive 

World Development 

Indicators 

Consumer Affordability of 

Electricity (Index) 
Negative RISE 

Social Controls 

Secondary enrolment rate (Gross) Positive World Bank Data 

Framework for stand-alone systems 

(Index) 
Positive RISE 

Table 1 - Summary of Control Variables, Source: Own elaboration 
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3.2 Data imputation & descriptive statistics 

Given the relatively small set of data available, missing values are imputed manually. Imputation is 

mainly necessary for educational data on secondary gross enrollment rates as here only ~60% of all 

datapoints were available. 

For secondary education, available data for years surrounding those of interest (2011, 2014 & 2017) was 

used to impute missing year-values. If data for years preceding and following those of interest were 

available, a linear trend was assumed to impute missing values. The same logic was applied if values 

were available for three preceding or following years. If just one preceding or following year value was 

available, all available data was used to derive a sample trend between the available year-value and the 

missing one (i.e. if 2014 value was missing but 2015 value was available and overall, secondary 

education increased by 5% across the whole sample from 2014 to 2015, this trend was used to compute 

the missing 2014 value using the existing 2015 value as a baseline). 

For datapoints where no neighboring values were available (education & RISE scores), available 

datapoints were used to compute the countries relative performance to the whole non-imputed dataset. 

Assuming that relative performance would remain roughly the same across years of interest, available 

values for the missing year-value of the non-imputed dataset were then used as a baseline to calculate 

the missing year-value for said country. In case no data was available, sample or group (HIC, UMIC, 

LMIC, LIC) averages were used to fill blanks. 

All rules used to impute data in this set are outlined in Appendix 1 of this dissertation. 

 

 

Table 2 - Statistics of Non-Imputed Dataset, Source: Own elaboration 



15 
 

 

Table 3 - Statistics of Imputed Dataset, Source: Own elaboration 

Tables 2 and 3 provide a summary of the statistics for all variables used in this analysis. Table 2 shows 

the statistics for the non-imputed dataset and table 3 shows the same statistics after data imputation. 

Installed solar PV capacities across the dataset average 6 MW between 2011 and 2017 with no difference 

before and after imputation as the set is complete. In 2011, average installed capacities are 1.9 MW, 

rising to 5.6 MW in 2014 and 10.4 MW in 2017. Standard deviation in installed capacities also increase 

from 3.4 in 2011 to 8.7 in 2017, as averages in some countries remain very low like Zambia at 0.1 MW 

compared to 37 MW in Kenya in 2017. 

Ownership of a bank account at a financial institution or a mobile money provider averages 30% of the 

total population in both the original and imputed dataset across periods at a standard deviation of 19.9 

and 19.6, respectively. This indicates that imputed data pushes observations slightly towards the mean. 

In 2011, bank account ownership averages 19.6% in the original dataset, rising to 28.8% in 2014 and 

41.5% in 2017 with imputation leaving values almost identical. Standard deviation also remains similar 

after imputation with the original dataset showing values of 15.5, 18.6 and 18.6 for 2011, 2014 and 2017 

respectively, compared to 14.8, 17.9 and 19.1 after imputation. 

The computed values on ownership of only a traditional bank account at a financial institution average 

17.7% and 17.3% in the original and imputed dataset, with standard deviation decreasing slightly from 

15.1 to 14.4 after imputation. From 2014 to 2017, averages decrease in the original and imputed datasets 

from 17.8% and 17.6% to 17.0% and 17.6% respectively. Standard deviation follows, decreasing 

slightly from 2014 to 2017 in both sets. 
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Percentages of the population with only a mobile money account stand at 8.7% in both datasets. Standard 

deviation is a bit higher in the original data at 8.8 compared to 8.4 after imputation. In contrast to 

traditional bank accounts, values increase from an average of 5.5% (original) and 5.4% (imputed) in 

2014 to 12% in 2017 within both datasets. Standard deviation also increases to 8.5 and 8.3 in 2017 

compared to 7.6 and 7.1 in 2014. This again highlights how some countries made remarkable 

developments in mobile banking like Gabon, increasing from close to 4% in 2014 to almost 20% in 

2017 compared to countries like Ethiopia, where mobile banking remained at a low of less than 1%. 

As for the included technological control variables, access to electricity and the internet increased from 

32.8% (electricity) and 6.8% (internet) to 43% and 23.4% respectively. Both indicators display high 

standard deviations across periods, indicating the large discrepancies between countries in scope. 

Economical controls are reflected by GNI per capita and the affordability RISE index. GNI increases 

from 2011 to 2014 but decreases in 2017, again displaying a high standard deviation. The RISE index 

rises across periods, also showing a high standard deviation. 

Finally, social controls were imputed heaviest in this set with only ~60% of datapoints available for 

secondary enrollment rates. However, judging from the descriptive statistics imputation does not skew 

means or standard deviations in general or across time. The sample average was 43% in the original 

dataset and 44% in the imputed one. Over time, averages increased in both datasets from ~40% to ~45% 

in 2014 and 47% in 2017. Standard deviation decreases slightly after imputation from around 17 to a 

little under 16, staying constant over time in both datasets. The second RISE index on stand-alone 

frameworks generally increased in line with most indicators between 2011 and 2017. Imputation did not 

alter means or standard deviations substantially with standard deviation remaining high across periods, 

indicating that an increased mean is driven by a few countries with others lagging behind. 

3.3 Estimation problems 

Two main issues arise when analyzing the displayed datasets. First, potential endogeneity due to omitted 

variables and second, errors related to unobserved heterogeneity. Limitations due to the small size of 

the data available are presented in chapter 4.2. 

Endogeneity due to omitted variables arises, when the model does not capture a variable which might 

be driving both, the dependent and main independent, variables of interest – in this case the growth of 

solar PV capacities as well as the coverage of bank accounts (mobile & institutional). Given the general 

complexity of technology diffusion, multiple factors could potentially play that role. As argued by 

Bawakyillenuo (2012), the diffusion of solar PV in Kenya between the 1960s and 2007 – that is both, 

on- and off-grid – could be attributed to a set of strong actors promoting the technology. Donor country 

investment geared towards solar PV as early as the 1960s and 1970s, built the foundation for today’s 

private industry (Bawakyillenou, 2012: 413-414). Another critical success factor for Kenya’s successful 
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PV diffusion was the targeting of an affluent group, namely rich rural households with no grid-

connection. Here, even early solar PV appliances could be sold at a profit while recruiting and training 

technicians on the technology to further develop the market (Bawakyillenuo, 2012: 417). Similar 

findings can be attributed to the diffusion of mobile money in Africa, where strong actors or individual 

firms take a leading role in promoting the technology (see e.g. Lashitew, Tulder & Liasse, 2019). 

In a more general sense, both the diffusion of (mobile) bank accounts as well as solar PV applications 

could ultimately be related to a more technologically affluent populace – in terms of education, 

awareness or income – as well as the general entrepreneurial spirit of an economy. Capturing these 

factors and their interplay – e.g. how more trained technicians indirectly spread awareness of a 

technology or how some shops adopting mobile money might send a signal to both customers and the 

market – is very difficult to capture in a quantitative approach and explains the general preference of in-

depth case-studies of research so far. 

Another set of indicators which could potentially drive both variables is related to the general 

infrastructure of a country. Road density, ease of commuting to larger cities, distances to the next “tech 

shop” or bank etc. could all be influencing a household’s decision to invest into a new technology – be 

it a mobile phone, setting up a (mobile) banking account or purchasing a solar PV application. In this 

dissertation, access to the internet is chosen as a main indicator on the technological infrastructure of a 

country, as it is readily available and likely to at least capture some of the effects outlined above. 

Another factor to consider is unobserved heterogeneity in our main variables, as data on financial 

inclusion is only available in three time-periods (2011, 2014 and 2017). Changes in the three years 

between each period are not reflected anywhere but might be important when assessing causal relations 

between them. Addressing this issue would only be possible by regressing values for the years of missing 

observations through some other, available indicator. This would, however, be a questionable approach 

as no data on any country is available and thus the whole set would be imputed. The much more likely 

option here is to repeat the approach outlined in chapter 4 of this dissertation, when more surveys on 

financial inclusion have been conducted. 

All these factors need to be considered when discussing the analytical setup of this dissertation as well 

as the results. And while some can be overcome by modelling techniques, the fact that both, mobile 

banking and off-grid solar PV appliances, are recent phenomena will only be solved by time. 

3.4 Regression model & analytical approach 

The main hypothesis of this dissertation is that those countries with a higher coverage of bank accounts 

(mobile or traditional) also show a higher amount of installed off-grid solar PV capacities. In order to 

analyze this hypothesis, the following two linear models are used: 
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1. Estimating the effect of general bank account coverage (traditional and mobile) on 

installed off-grid solar PV capacities: 

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑃𝑃𝑃𝑃 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖
=  𝛼𝛼 +  𝛽𝛽1𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖𝑖𝑖 + 𝛽𝛽2𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖𝑖𝑖 +  𝛽𝛽3𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖𝑖𝑖 +  𝛽𝛽4𝐺𝐺𝐺𝐺𝐺𝐺𝑖𝑖𝑖𝑖
+  𝛽𝛽5𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖𝑖𝑖 +  𝛽𝛽6𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖𝑖𝑖 +  𝛽𝛽7𝑆𝑆𝑆𝑆𝑆𝑆𝑛𝑛𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖 +  𝜖𝜖𝑖𝑖𝑖𝑖 

2. Comparing the effect of mobile bank accounts and traditional bank accounts on installed 

off-grid solar PV capacities: 

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑃𝑃𝑃𝑃 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖
=  𝛼𝛼 +  𝛽𝛽1𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖𝑖𝑖 + 𝛽𝛽2𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖𝑖𝑖
+   𝛽𝛽3𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖𝑖𝑖 + 𝛽𝛽4𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖𝑖𝑖 +  𝛽𝛽5𝐺𝐺𝐺𝐺𝐺𝐺𝑖𝑖𝑖𝑖 +  𝛽𝛽6𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖𝑖𝑖
+   𝛽𝛽7𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖𝑖𝑖 +  𝛽𝛽8𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖 + 𝜖𝜖𝑖𝑖𝑖𝑖 

Countries are indicated by i and time by t. β is the indicator-specific factor to measure the impact of 

each independent variable on the main dependent variables. Installed Solar PV Capacities is the main 

dependent variable, displaying the installed capacity of off-grid solar PV in country i and year t. 

Accounts reflect the percentage of the population using either a mobile or traditional bank account or 

both in country i and year t. This variable is split into two for the second model, namely Traditional 

Accounts, reflecting the percentage of the population which only uses traditional bank accounts and 

Mobile Accounts, reflecting the percentage of the population using only a mobile bank account. 

Technological controls are reflected by Electricity, indicating the percentage of population with access 

to electricity, and Internet as the percentage of the population with access to the internet. Economical 

controls are GNI as the gross national income per capita and Affordable as the RISE Affordability 

index of electricity. Social Controls are Education for gross secondary enrollment rates and 

StandAlone for the RISE index measuring existing frameworks for stand-alone electrification systems. 

Instead of a time series regression which might be more common for panel data, this analysis uses 

individual cross-sectional regressions, where i is either 2011, 2014 or 2017 for the respective regression. 

The main reason to employ cross-sectional regression models is the availability of mobile banking data. 

Mobile account coverage is only available in 2014 and 2017, making the available panel for this 

indicator very short. Additionally, initial analyses showed interesting variations in effects of mobile 

banking coverage between the two available periods. These would be omitted in a panel estimator. 

In a first step, model (1) was used without any controls to check for the estimated impact of general 

bank account coverage on solar PV capacities and to compare the original and imputed datasets for all 

three time-periods – the results are presented in table 4. 

The second step was to introduce controls to model (1) in groups, adding technological controls first, 

economical controls second and social controls third and check, how coefficients change. This was only 

done for 2014 and 2017, as the initial step suggests, that there is no effect of bank account coverages on 
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solar PV capacities in 2011 and because data on mobile bank accounts is only available in 2014 and 

2017. Results for this step are presented in table 5. 

In a final step, bank account coverage was split into the percentage of the population using only 

traditional bank accounts at a financial institution and those using only a mobile bank account. Again, 

controls are introduced in the same manner as before to observe changes over time from 2014 to 2017 

as well as the interaction between variables. The results are shown in table 6. 

4. EMPIRICAL RESULTS & INTERPRETATION 

4.1 Presentation of empirical results 

All the results presented in this section are computed using R project software. The code can be obtained 

from Appendix 2 of this dissertation. 

 

Table 4 – Results of Model (1) without Controls, Source: Own elaboration 

Table 4 displays the results from the first model in order to compare the effect of general bank account 

coverage on installed solar PV capacities in 2011, 2014 and 2017 between the original and imputed 

dataset. Regressions 1-3 reflect the original dataset and regressions 4-6 the imputed one. 

Three important factors can be observed: First, the original and imputed dataset perform very similarly 

across years, which warrants the usage of the imputed dataset for further analysis. Second, account 

coverage does not seem to impact solar PV capacities in 2011 at all. As there is also no data available 

for mobile banking in 2011, this period is dropped from the analysis. And third, the coefficient of bank 

account coverage is slightly smaller in 2014 and 2017 in the imputed dataset while losing some 

significance in 2017 as well. This effect needs to be considered, when interpreting further results. 
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Table 5 – Results of Model (1) with Controls, Source: Own elaboration 

Table 5 summarizes the results of introducing different control variables to model (1) in 2014 and 2017. 

In both periods, bank account coverage remains statistically significant at a minimum of 95% confidence 

with a very constant coefficient. Coefficients of account ownership in 2014 and 2017 with all controls 

can be interpreted as follows: A one percent increase in the population with a traditional or mobile bank 

account reflects an increase in installed off-grid solar PV capacities of 0.15MW in 2014 and 0.24MW 

in 2017 respectively. A slight decrease is observable in 2014 when introducing the social controls of a 

stand-alone system index and secondary enrollments. Interestingly, very few controls appear as 

statistically significant – the only exceptions being the affordability index in 2014 with an unexpected 

positive impact, as this suggests that those countries with more affordable electricity were more likely 

to install off-grid solar capacities. The index on frameworks for stand-alone systems also appears as 

statistically significant, if only in 2014 with an expected positive impact on installed off-grid solar PV 

capacities. 
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Table 6 – Results of Model (2), Source: Own elaboration 

Table 6 shows the results of model (2), where bank account coverage was split into those parts of a 

countries population only using traditional bank accounts at a financial institution and those only using 

a mobile bank account. In 2014, traditional bank account coverage shows a higher impact on installed 

solar PV capacities compared to general bank account coverage in model (1). This is likely due to the 

fact, that mobile bank accounts, which were included in general bank account coverage of model (1), 

are not significantly impacting solar PV capacities in 2014. The traditional account coefficient of 0.35 

from regression (3) in table 6 can be interpreted as a 0.35MW increase in installed off-grid solar PV 

capacities for every percent increase in the population using a traditional bank account. In 2017 however, 

mobile bank account coverage shows a significant impact on installed solar PV capacities. The impact 

remains statistically significant when introducing technological and economical controls and is higher 

than the impact of traditional bank accounts with regression (6) in table 6 displaying a 0.44 MW increase 

in installed off-grid solar PV capacities for every percent increase in the population using only mobile 

bank accounts. When introducing social controls, statistical significance decreases from a 95% 

confidence to 90% for rejecting the null hypothesis. 

Contrary to model (1), the affordability index does not show as statistically significant anymore which 

might indicate a relationship with the main independent variables. The stand-alone system index remains 
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statistically significant with a positive impact. Interestingly, secondary enrolment rates now show 

statistical significance with an unexpected negative impact, if only in 2014. 

 

 

Figure 7 - Summary of coefficients for main predictors incl. 0.95 CI, Source: Own elaboration 

Figure 7 summarizes the coefficients and related 95% confidence intervals for the main independent 

variables of interest with all control variables activated for the respective regression model. 

4.2 Interpretation of findings & limitations 

The results presented in the last chapter show that in a cross-sectional analysis, access to financial 

services via bank accounts plays a significant role in advancing off-grid solar PV applications in 2014 

and 2017. The fact that bank account coverage does not play a significant role in 2011 could be explained 

by the early stages in which off-grid solar PV applications still stood in countries of sub-Saharan Africa 

at that time. In 2011, total installed capacities came up to only 72.5MW in all countries combined. It is 

possible, that installed capacities up until that point were mainly driven by development projects of 

international organizations as a way to provide electricity to rural households. Advances of solar PV 

applications in private markets could explain, why access to finance gained importance by 2014 as 

households became main customers of producers rather than development agencies. 

Mobile bank accounts only became an important driver of solar PV applications in 2017. A missing 

effect in 2014 could be explained by a variety of factors. First, effects of mobile banking on savings 
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behavior, income or investment decisions might be lagged in their nature. And even though mobile 

banking applications were already gaining popularity in 2014, on average only 5% of the population in 

countries of this analysis were using mobile bank accounts exclusively at that time. Effects might 

therefore either be too small to detect or only took effect in the following years. Another possible 

explanation could be related to the functionalities offered with mobile banking applications. Take, for 

example, M-PESA where the initial goal was to provide a large part of the population with person-to-

person transactions as well as enabling them to pay bills or receive payments. Functionalities to provide 

credit, loans or savings accounts were only introduced later (Mas & Radcliffe, 2011: 171). Thus, the 

provision of services linked to purchasing solar PV applications is likely to take place only at a later 

stage when (a) a larger share of the population uses mobile bank services and (b) the services provided 

are geared towards saving and investment decisions of households. 

However, the effect of mobile bank accounts and traditional ones is only significant at a 90% confidence 

level when controlling for education and frameworks for stand-alone systems, which warrants doubt, if 

that significance would pertain when adding other, potentially more significant controls. It could also 

point to the fact, that the results are driven by some countries where both traditional account coverage 

and mobile bank account coverage are individually high as well as installed solar PV capacities. When 

examining the 95% confidence intervals of coefficients presented in figure 7, there is a likely positive 

impact of both forms of bank accounts but still, within that interval impacts could also be null or 

negative. 

The RISE affordability index showed a significant effect on installed solar PV capacities in the first 

regression model in 2014, which decreased in significance when differentiating between traditional and 

mobile bank accounts and showed in neither model for 2017. This suggests an interaction between the 

variable for traditional bank accounts only and affordability scores. Interaction could potentially go 

either way but is likely to be related to the fact that countries with a higher amount of the population 

using traditional bank accounts should be more developed from an infrastructure perspective and thus 

more likely to have affordable access to electricity. With the rise of off-grid appliances, that effect is 

likely to fade as those countries which are less developed in terms of grid-connection and traditional 

financial access can now supply parts of their population with affordable electricity. 

Looking at the RISE index on stand-alone systems, a significant impact prevails for 2014 in both models 

but does not show for 2017. This indicates the importance of national programs to push the development 

of systems in earlier stages as well as the impact of financial incentives by public authorities. It eases 

the market entrance for providers and potentially reduces overall cost for consumers – however, this 

impact is likely to decrease, once a market has developed which does not need subsidizing from public 

actors. 



24 
 

Secondary enrollment rates as a measure for education also poses a puzzle on first sight, as it does not 

show as statistically significant in model 1 for either 2014 or 2017 but does impact solar PV capacities 

negatively in 2014 when differentiating between traditional and mobile bank accounts. This could again 

be explained by some unobserved level of technological development, where those countries with a 

more educated population are more likely to perform better on a general scale of infrastructure and 

therefore less likely to adapt off-grid technologies in the earlier stages. Another possible explanation 

could be the targeted population to receive off-grid technologies first. Impact-driven providers of solar 

PV technology could target those countries which score lower in overall development indicators first in 

order to provide the ones most in need with electricity. With increases in off-grid electrification 

generally, that effect could fade as the market develops. 

While these results provide some proof of the importance of financial access when electrifying 

households in sub-Saharan Africa, there are still limitations which need to be considered. 

First and foremost, the missing statistical significance of most of the control variables points to a 

weakness of the model employed as the added controls did not influence solar PV capacities as 

anticipated. Other controls could have been more appropriate for these models and, if they would also 

affect mobile bank coverage, could potentially skew the observed coefficients. 

That finding leads to the possibility of an omitted explanatory variable which drives both solar PV 

capacities and bank account coverage, as discussed in chapter 3.3. Theoretically, this problem could be 

overcome by employing a fixed effects regression in order to filter out time-invariant unobserved 

differences between the units of analysis instead of a cross-sectional regression. However, given the 

result that mobile bank account coverage only significance in 2017 and a fixed effects regression would 

provide the average effect of mobile banking over the two available periods, it is unlikely that an effect 

would have shown at all. For general bank account coverage, this approach could work with current data 

availability but would then again limit comparability between traditional and mobile bank accounts. 

Finally, the small sample size poses a challenge when generalizing the findings of this dissertation. 

While statistically significant, the number of observations per time-period was only 38 and thus far from 

a large N quantitative study to prove causality beyond reasonable doubt. Overcoming this challenge for 

a cross-country comparison will only be possible when standardized information such as the financial 

inclusion survey on mobile bank accounts is available for a larger number of years. 
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5. CONCLUSION 

5.1 Recommendations for future research 

One of the main challenges to overcome in future research towards this topic is data availability. While 

the recent nature of both mobile banking accounts as well as solar PV applications explains why data is 

hardly obtainable before 2010, the frequency of reporting on indicators of financial inclusion does pose 

a significant hurdle. The financial inclusion database is only updated every 3 years, thus missing 

important year-by-year variations in mobile bank account coverages which are likely to occur in fast-

paced, internet-based business models. Finding alternative sources to estimate the percentage of 

populations using different kinds of mobile or traditional banking solutions could therefore be crucial 

to obtain a more nuanced view on the effects on and from these technologies. 

More insights are required to unravel factors influencing the diffusion of mobile banking applications 

and off-grid electrification technologies simultaneously in a cross-country comparison. A sound 

framework to explain different levels of diffusion for both technologies and their interplay could be 

crucial to private sector investment as well as policy makers to identify accelerators as well as 

roadblocks. 

With more data available and a stronger framework, the next step in research should be to dissect the 

effects of financial inclusion on off-grid electrification in different parts of the population. 

Differentiating between rural households which are most likely excluded from national grids, urban 

households which might have access but could struggle to afford it as well as the role of richer 

households investing into future technology would provide important insights on the customer base of 

solar PV applications and how mobile technologies can help to overcome current problems. 

In a more general sense, findings on the causal mechanisms at play between financial inclusion and solar 

PV diffusion could provide a base for other technologies as well. Water purification systems, sanitary 

applications or remote educational technology could all enter the private market for households in SSA 

on a large scale soon, but will face similar problems regarding income, savings and loan accessibility 

for those households most in need of them. Understanding the financial means required for households 

and individuals to invest into them is thus already crucial for stakeholders and very likely to increase 

further in the future. 

5.2 Concluding remarks 

This dissertation has explored the potential impact of traditional and mobile bank account coverage on 

installed off-grid solar PV capacities in countries of sub-Saharan Africa. Providing the population of 

countries in SSA with access to financial services and electricity are key targets of governments as well 

as the international development community and both have seen a significant increase in the last decade. 

Despite numerous studies on the individual development and diffusion of mobile banking applications 
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and solar PV technologies in countries of SSA, little research has yet tried to uncover a potential causal 

link between the two. Finding a positive impact from one to the other offers the chance to streamline 

resources in the public and private sector to engage in an efficient and effective way of electrifying 

households through access to financial services. 

Results of the analysis show that both, traditional and mobile bank accounts, have a positive, significant 

impact on installed solar PV capacities. While traditional bank accounts show a significant effect in 

2014 and 2017, mobile banking only appears to have made that impact in 2017 but to a higher degree 

when compared to traditional banking applications. These results support the theory, that mobile bank 

account coverage is increasing in importance to provide financial services which in turn allows 

households to invest into technological applications such as solar PV systems. 

While limited by data availability and a potential to improve on control variables, these results indicate 

the need for further research on the impact of financial inclusion on technology diffusion in general and 

more specifically the technology geared to help alleviate households from poverty. 
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APPENDIX 

Appendix 1: Rules of Data Imputation 

Secondary enrolment rates 

1. If data was available for both the preceding and following year, a linear trend between the two 

years was assumed. 

2. If data was available for at least 3 preceding or following years, a linear trend was assumed for 

the respective following or preceding year. 

3. If data was available for one preceding or following year, averages from the non-imputed 

sample were used to estimate a general trend which was applied to the respective year. 

4. If no data was available for either the preceding or following year, but at least two values were 

available, any existing data in a 10-year span was used to calculate an average performance of 

the respective country compared with the non-imputed data sample. The non-imputed sample 

average was then used to estimate the respective missing country-year value 

5. If less than 2 values were available at all, averages for the respective year from the non-imputed 

sample were used. 

Total datapoints imputed this way: 45 

 

Account data 

1. If any data was available for 2011, 2014 or 2017, the sample average for missing years was used 

to calculate the countries relative performance, assuming that the country performed the same, 

relative to the whole sample in years of missing data. 

Total datapoints imputed this way: 16 

 

RISE Scores 

1. If any data was available for the respective country in 2011, 2014 or 2017, the non-imputed 

sample average for that year and indicator was used to calculate the countries relative 

performance, assuming that the country performed the same relative to the whole sample in 

years of missing data. 

2. If no data was available at all for the respective country and indicator, sample averages were 

used to fill blanks. 

Total datapoints imputed this way: 44 
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GNI 

1. Missing datapoints were imputed using the sample average of countries in the same income 

cluster (LIC, LMIC, UMIC and HIC). 

Total datapoints imputed this way: 4 

 

Appendix 2: R Code used for regression models 

#1. Models from Original Data & Imputed Data for 2011,14 and 17 without Controls 

##Original Data first 

Model2011AllNoControl <- lm(NonImputed2011$`Solar PV capacities -> IRENA` ~ 

NonImputed2011$`Account ownership (mobile & fin inst) -> WDI`) 

Model2014AllNoControl <- lm(NonImputed2014$`Solar PV capacities -> IRENA` ~ 

NonImputed2014$`Account ownership (mobile & fin inst) -> WDI`) 

Model2017AllNoControl <- lm(NonImputed2017$`Solar PV capacities -> IRENA` ~ 

NonImputed2017$`Account ownership (mobile & fin inst) -> WDI`) 

##Imputed Second 

Model2011AllNoControl_Imputed <- lm(Imputed2011$`Solar PV capacities -> IRENA` ~ 

Imputed2011$`Account ownership (mobile & fin inst) -> WDI`) 

Model2014AllNoControl_Imputed <- lm(Imputed2014$`Solar PV capacities -> IRENA` ~ 

Imputed2014$`Account ownership (mobile & fin inst) -> WDI`) 

Model2017AllNoControl_Imputed <- lm(Imputed2017$`Solar PV capacities -> IRENA` ~ 

Imputed2017$`Account ownership (mobile & fin inst) -> WDI`) 

##Summarize Results in Stargazer 

stargazer(Model2011AllNoControl, Model2014AllNoControl, Model2017AllNoControl, 

Model2011AllNoControl_Imputed,Model2014AllNoControl_Imputed, 

Model2017AllNoControl_Imputed, type = "html", digits = 2, out = "ResultsCrossSec1.html", 

covariate.labels = c("Account ownership"), column.labels = c("2011", "2014","2017","2011", "2014", 

"2017"), model.names = FALSE, dep.var.caption = c("Installed Off-Grid Solar PV Capacities"), 

dep.var.labels = c("","Original Data","", "", "Imputed Data", "")) 

##2. Continue with imputed data, adding controls in meaningful groups, drop 2011 



32 
 

###Technological Controls only 

Model2014All_2Controls <- lm(Imputed2014$`Solar PV capacities -> IRENA` ~ 

Imputed2014$`Account ownership (mobile & fin inst) -> WDI` + Imputed2014$`Access to electricity` 

+ Imputed2014$`Access to internet`) 

Model2017All_2Controls <- lm(Imputed2017$`Solar PV capacities -> IRENA` ~ 

Imputed2017$`Account ownership (mobile & fin inst) -> WDI` + Imputed2017$`Access to electricity` 

+ Imputed2017$`Access to internet`) 

###Technological & Economical Controls 

Model2014All_4Controls <- lm(Imputed2014$`Solar PV capacities -> IRENA` ~ 

Imputed2014$`Account ownership (mobile & fin inst) -> WDI` + Imputed2014$`Access to electricity` 

+ Imputed2014$`Access to internet` + Imputed2014$`GNI per capita` + Imputed2014$Affordability) 

Model2017All_4Controls <- lm(Imputed2017$`Solar PV capacities -> IRENA` ~ 

Imputed2017$`Account ownership (mobile & fin inst) -> WDI` + Imputed2017$`Access to electricity` 

+ Imputed2017$`Access to internet` + Imputed2017$`GNI per capita` + Imputed2017$Affordability) 

###All Controls 

Model2014All_6Controls <- lm(Imputed2014$`Solar PV capacities -> IRENA` ~ 

Imputed2014$`Account ownership (mobile & fin inst) -> WDI` + Imputed2014$`Access to electricity` 

+ Imputed2014$`Access to internet` + Imputed2014$`GNI per capita` + Imputed2014$Affordability + 

Imputed2014$`Sec. Enrolment` + Imputed2014$`Stand-alone systems`) 

Model2017All_6Controls <- lm(Imputed2017$`Solar PV capacities -> IRENA` ~ 

Imputed2017$`Account ownership (mobile & fin inst) -> WDI` + Imputed2017$`Access to electricity` 

+ Imputed2017$`Access to internet` + Imputed2017$`GNI per capita` + Imputed2017$Affordability + 

Imputed2017$`Sec. Enrolment` + Imputed2017$`Stand-alone systems`) 

##Combine results in stargazer 

stargazer(Model2014All_2Controls, Model2014All_4Controls, Model2014All_6Controls, 

Model2017All_2Controls, Model2017All_4Controls, Model2017All_6Controls, type = "html", digits = 

2, out = "ResultsCrossSec2.html", covariate.labels = c("Account ownership", "Electricity Access", 

"Internet Access", "GNI p.c.", "Affordability Index", "Secondary Enrollment", "Stand-alone System 

Index"), column.labels = c("", "2014","","", "2017", ""), model.names = FALSE, dep.var.caption = 

c("Installed Off-Grid Solar PV Capacities"), dep.var.labels.include = FALSE) 

 

##3. Repeat process from before but differentiate between type of account 
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##Technological Controls only 

Model2014Diff2_2Controls <- lm(Imputed2014$`Solar PV capacities -> IRENA` ~ 

Imputed2014$`Only FIN INST Acc -> Computed` + Imputed2014$`Only Mobile Money Acc -> 

Computed` + Imputed2014$`Access to electricity` + Imputed2014$`Access to internet`) 

Model2017Diff2_2Controls <- lm(Imputed2017$`Solar PV capacities -> IRENA` ~ 

Imputed2017$`Only FIN INST Acc -> Computed` + Imputed2017$`Only Mobile Money Acc -> 

Computed` + Imputed2017$`Access to electricity` + Imputed2017$`Access to internet`) 

###Technological & Economical Controls 

Model2014Diff2_4Controls <- lm(Imputed2014$`Solar PV capacities -> IRENA` ~ 

Imputed2014$`Only FIN INST Acc -> Computed` + Imputed2014$`Only Mobile Money Acc -> 

Computed` + Imputed2014$`Access to electricity` + Imputed2014$`Access to internet` + 

Imputed2014$`GNI per capita` + Imputed2014$Affordability) 

Model2017Diff2_4Controls <- lm(Imputed2017$`Solar PV capacities -> IRENA` ~ 

Imputed2017$`Only FIN INST Acc -> Computed` + Imputed2017$`Only Mobile Money Acc -> 

Computed`+ Imputed2017$`Access to electricity` + Imputed2017$`Access to internet` + 

Imputed2017$`GNI per capita` + Imputed2017$Affordability) 

 

###All Controls 

Model2014Diff2_6Controls <- lm(Imputed2014$`Solar PV capacities -> IRENA` ~ 

Imputed2014$`Only FIN INST Acc -> Computed` + Imputed2014$`Only Mobile Money Acc -> 

Computed` + Imputed2014$`Access to electricity` + Imputed2014$`Access to internet` + 

Imputed2014$`GNI per capita` + Imputed2014$Affordability + Imputed2014$`Sec. Enrolment` + 

Imputed2014$`Stand-alone systems`) 

Model2017Diff2_6Controls <- lm(Imputed2017$`Solar PV capacities -> IRENA` ~ 

Imputed2017$`Only FIN INST Acc -> Computed` + Imputed2017$`Only Mobile Money Acc -> 

Computed` + Imputed2017$`Access to electricity` + Imputed2017$`Access to internet` + 

Imputed2017$`GNI per capita` + Imputed2017$Affordability + Imputed2017$`Sec. Enrolment` + 

Imputed2017$`Stand-alone systems`) 

##Combine Results in Stargazer - same layout as before 

stargazer(Model2014Diff2_2Controls, Model2014Diff2_4Controls, Model2014Diff2_6Controls, 

Model2017Diff2_2Controls, Model2017Diff2_4Controls, Model2017Diff2_6Controls, type = "html", 

digits = 2, out = "ResultsCrossSec4.html", covariate.labels = c("Traditional Account Only", "Mobile 
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Account Only", "Electricity Access", "Internet Access", "GNI p.c.", "Affordability Index", "Secondary 

Enrollment", "Stand-alone System Index"), column.labels = c("", "2014","","", "2017", ""), 

model.names = FALSE, dep.var.caption = c("Installed Off-Grid Solar PV Capacities"), 

dep.var.labels.include = FALSE) 

Appendix 3: Data sources used in regression models 

Indicator Data source 

Installed solar PV capacities 

(MW, cumulative) 

IRENA - https://www.irena.org/publications

/2020/Mar/Renewable-Capacity-Statistics-2020 

Account ownership 

(traditional or mobile, % of population 

aged 15 or older) 

Financial Inclusion Database - 

https://datacatalog.worldbank.org/dataset/global-financial-

inclusion-global-findex-database 

Account ownership at a financial 

institution  

(% of population aged 15 or older) 

Financial Inclusion Database - 

https://datacatalog.worldbank.org/dataset/global-financial-

inclusion-global-findex-database 

Account ownership at a mobile money 

provider  

(% of population aged 15 or older) 

Financial Inclusion Database - 

https://datacatalog.worldbank.org/dataset/global-financial-

inclusion-global-findex-database 

Individuals using the internet 

(% of total population) 

International Telecommunication Union - 

https://www.itu.int/en/ITU-D/Statistics/Pages/stat/ 

default.aspx 

Electricity Access 

(% of total population) 

World Bank Database – Electricity Access -

https://data.worldbank.org/indicator/EG.ELC. 

ACCS.ZS?locations=ZG 

Gross national income per capita, Atlas 

method (current USD) 

World Bank Database - 

https://data.worldbank.org/indicator/NY.GNP. 

PCAP.CD?locations=ZG&name_desc=false 

Secondary school enrolment, secondary 

(% gross): 
https://data.worldbank.org/indicator/SE.SEC.ENRR
?locations=ZG

RISE scores https://rise.worldbank.org/scores 

https://www.irena.org/publications/2020/Mar/Renewable-Capacity-Statistics-2020
https://www.irena.org/publications/2020/Mar/Renewable-Capacity-Statistics-2020
https://datacatalog.worldbank.org/dataset/global-financial-inclusion-global-findex-database
https://datacatalog.worldbank.org/dataset/global-financial-inclusion-global-findex-database
https://datacatalog.worldbank.org/dataset/global-financial-inclusion-global-findex-database
https://datacatalog.worldbank.org/dataset/global-financial-inclusion-global-findex-database
https://datacatalog.worldbank.org/dataset/global-financial-inclusion-global-findex-database
https://datacatalog.worldbank.org/dataset/global-financial-inclusion-global-findex-database
https://www.itu.int/en/ITU-D/Statistics/Pages/stat/default.aspx
https://www.itu.int/en/ITU-D/Statistics/Pages/stat/default.aspx
https://data.worldbank.org/indicator/EG.ELC.ACCS.ZS?locations=ZG
https://data.worldbank.org/indicator/EG.ELC.ACCS.ZS?locations=ZG
https://data.worldbank.org/indicator/SE.SEC.ENRR
https://rise.worldbank.org/scores
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